Analysis of local-scale urban heat island characteristics using an integrated method of mobile measurement and GIS-based spatial interpolation

2017 ◽  
Vol 117 ◽  
pp. 191-207 ◽  
Author(s):  
Lin Liu ◽  
Yaoyu Lin ◽  
Jing Liu ◽  
Lina Wang ◽  
Dan Wang ◽  
...  
2020 ◽  
Vol 12 (18) ◽  
pp. 7301
Author(s):  
Sheikh Ahmad Zaki ◽  
Nor Suhada Azid ◽  
Mohd Fairuz Shahidan ◽  
Mohamad Zaki Hassan ◽  
Mohd Yusof Md Daud ◽  
...  

As a Malay Agricultural Settlement established in 1900, Kampung Baru which is located in Kuala Lumpur, has become a subject of prolonged national interests in terms of economic, social, environment, and political issues along with the pressure of modern and future development. This study investigated the urban morphological impact of Kampung Baru on the intensity of urban heat island (UHI) by developing a smart geodatabase for urban climatic mapping. The database provided baseline data which was crucial to unveil the spatiotemporal characteristics of UHI in Kampung Baru. Determination of the urban heat island intensity (UHII) in Kampung Baru was carried out through two approaches, mobile and fixed measurements. In a period of six days, the mobile measurement was conducted within the target area at night using a motorcycle equipped with the temperature and relative humidity data logger while the fixed measurement was conducted using the similar equipment installed at a school building in the area. Building height data were also collected while building footprints were digitized using a topographical map and the satellite image was used as the base map. To estimate the UHII, the reference data for rural temperature was obtained from the Malaysian Meteorological Department (MMD). All of the data were analyzed using ArcGIS to portray the temperature pattern in the study area. The analysis revealed the presence of UHI effect in Kampung Baru at the average building height of six to ten metres. The results of the fixed measurement showed an island-like local maximum in the study area with the average and maximum UHII values of 4.4 °C and 6.0 °C, respectively. The results from the mobile measurement also showed that the highest temperature was recorded in Kampung Baru rather than in the surrounding areas of different land-use types throughout the observation days. The spatial temperature distribution in the study area also showed that the most affected part was the south-west of Kampung Baru which is surrounded by tall buildings. The findings of this study could be utilized in the planning of new development in the city of Kuala Lumpur.


2021 ◽  
Vol 9 ◽  
Author(s):  
Mikhail Varentsov ◽  
Daniel Fenner ◽  
Fred Meier ◽  
Timofey Samsonov ◽  
Matthias Demuzere

Urban climate features, such as the urban heat island (UHI), are determined by various factors characterizing the modifications of the surface by the built environment and human activity. These factors are often attributed to the local spatial scale (hundreds of meters up to several kilometers). Nowadays, more and more urban climate studies utilize the concept of the local climate zones (LCZs) as a proxy for urban climate heterogeneity. However, for modern megacities that extend to dozens of kilometers, it is reasonable to suggest a significant contribution of the larger-scale factors to the temperature and UHI climatology. In this study, we investigate the contribution of local-scale and mesoscale driving factors of the nocturnal canopy layer UHI of the Moscow megacity in Russia. The study is based on air temperature observations from a dense network consisting of around 80 reference and more than 1,500 crowdsourced citizen weather stations for a summer and a winter season. For the crowdsourcing data, an advanced quality control algorithm is proposed. Based on both types of data, we show that the spatial patterns of the UHI are shaped both by local-scale and mesoscale driving factors. The local drivers represent the surface features in the vicinity of a few hundred meters and can be described by the LCZ concept. The mesoscale drivers represent the influence of the surrounding urban areas in the vicinity of 2–20 km around a station, transformed by diffusion, and advection in the atmospheric boundary layer. The contribution of the mesoscale drivers is reflected in air temperature differences between similar LCZs in different parts of the megacity and in a dependence between the UHI intensity and the distance from the city center. Using high-resolution city-descriptive parameters and different statistical analysis, we quantified the contributions of the local- and mesoscale driving factors. For selected cases with a pronounced nocturnal UHI, their respective contributions are of similar magnitude. Our findings highlight the importance of taking both local- and mesoscale effects in urban climate studies for megacities into account. Furthermore, they underscore a need for an extension of the LCZ concept to take mesoscale settings of the urban environment into account.


Author(s):  
Jiong Wang ◽  
Qingming Zhan ◽  
Yinghui Xiao

Current characterization of the Land Surface Temperature (LST) at city scale insufficiently supports efficient mitigations and adaptations of the Surface Urban Heat Island (SUHI) at local scale. This research intends to delineate the LST variation at local scale where mitigations and adaptations are more feasible. At the local scale, the research helps to identify the local SUHI (LSUHI) at different levels. The concept complies with the planning and design conventions that urban problems are treated with respect to hierarchies or priorities. Technically, the MODerate-resolution Imaging Spectroradiometer satellite image products are used. The continuous and smooth latent LST is first recovered from the raw images. The Multi-Scale Shape Index (MSSI) is then applied to the latent LST to extract morphological indicators. The local scale variation of the LST is quantified by the indicators such that the LSUHI can be identified morphologically. The results are promising. It can potentially be extended to investigate the temporal dynamics of the LST and LSUHI. This research serves to the application of remote sensing, pattern analysis, urban microclimate study, and urban planning at least at 2 levels: (1) it extends the understanding of the SUHI to the local scale, and (2) the characterization at local scale facilitates problem identification and support mitigations and adaptations more efficiently.


Author(s):  
Jiong Wang ◽  
Qingming Zhan ◽  
Yinghui Xiao

Current characterization of the Land Surface Temperature (LST) at city scale insufficiently supports efficient mitigations and adaptations of the Surface Urban Heat Island (SUHI) at local scale. This research intends to delineate the LST variation at local scale where mitigations and adaptations are more feasible. At the local scale, the research helps to identify the local SUHI (LSUHI) at different levels. The concept complies with the planning and design conventions that urban problems are treated with respect to hierarchies or priorities. Technically, the MODerate-resolution Imaging Spectroradiometer satellite image products are used. The continuous and smooth latent LST is first recovered from the raw images. The Multi-Scale Shape Index (MSSI) is then applied to the latent LST to extract morphological indicators. The local scale variation of the LST is quantified by the indicators such that the LSUHI can be identified morphologically. The results are promising. It can potentially be extended to investigate the temporal dynamics of the LST and LSUHI. This research serves to the application of remote sensing, pattern analysis, urban microclimate study, and urban planning at least at 2 levels: (1) it extends the understanding of the SUHI to the local scale, and (2) the characterization at local scale facilitates problem identification and support mitigations and adaptations more efficiently.


Sign in / Sign up

Export Citation Format

Share Document