scholarly journals Modelling double skin façades (DSFs) in whole-building energy simulation tools: Validation and inter-software comparison of a mechanically ventilated single-story DSF

2021 ◽  
Vol 199 ◽  
pp. 107906
Author(s):  
Elena Catto Lucchino ◽  
Adrienn Gelesz ◽  
Kristian Skeie ◽  
Giovanni Gennaro ◽  
András Reith ◽  
...  
Author(s):  
El Hassan Ridouane ◽  
Marcus V. A. Bianchi

Uninsulated wall assemblies are typical in older homes, as many were built before building codes required insulation. Building engineers need to understand the thermal performance of these assemblies as they consider home energy upgrades if they are to properly predict pre-upgrade performance and, consequently, prospective energy savings from the upgrade. Most whole-building energy simulation tools currently use simplified, 1D characterizations of building envelopes and assume a fixed thermal resistance that does not vary over a building’s temperature range. This study describes a detailed 3D computational fluid dynamics model that evaluates the thermal performance of uninsulated wall assemblies. It accounts for conduction through framing, convection, and radiation and allows for material property variations with temperature. Parameters that were varied include ambient outdoor temperature and cavity surface emissivity. The results may serve as input for building energy simulation tools that model the temperature-dependent energy performance of homes with uninsulated walls.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4058
Author(s):  
Matt S. Mitchell ◽  
Jeffrey D. Spitler

This paper presents an enhanced vertical ground heat exchanger (GHE) model for whole-building energy simulation (WBES). WBES programs generally have computational constraints that affect the development and implementation of component simulation sub-models. WBES programs require models that execute quickly and efficiently due to how the programs are utilized by design engineers. WBES programs also require models to be formulated so their performance can be determined from boundary conditions set by upstream components and environmental conditions. The GHE model developed during this work utilizes an existing response factor model and extends its capabilities to accurately and robustly simulate at timesteps that are shorter than the GHE transit time. This was accomplished by developing a simplified dynamic borehole model and then exercising that model to generate exiting fluid temperature response factors. This approach blends numerical and analytical modeling methods. The existing response factor models are then extended to incorporate the exiting fluid temperature response factor to provide a better estimate of the GHE exiting fluid temperature at short simulation timesteps.


Sign in / Sign up

Export Citation Format

Share Document