scholarly journals Radiation boundary conditions for time-dependent waves based on complete plane wave expansions

2010 ◽  
Vol 234 (6) ◽  
pp. 1988-1995 ◽  
Author(s):  
Thomas Hagstrom ◽  
Timothy Warburton ◽  
Dan Givoli
1999 ◽  
Author(s):  
Lonny L. Thompson ◽  
Runnong Huan

Abstract Asymptotic and exact local radiation boundary conditions first derived by Hagstrom and Hariharan are reformulated as an auxiliary Cauchy problem for linear first-order systems of ordinary equations on the boundary for each harmonic on a circle or sphere in two- or three-dimensions, respectively. With this reformulation, the resulting radiation boundary condition involves first-order derivatives only and can be computed efficiently and concurrently with standard semi-discrete finite element methods for the near-field solution without changing the banded/sparse structure of the finite element equations. In 3D, with the number of equations in the Cauchy problem equal to the mode number, this reformulation is exact. If fewer equations are used, then the boundary conditions form uniform asymptotic approximations to the exact condition. Furthermore, using this approach, we formulate accurate radiation boundary conditions for the two-dimensional unbounded problem on a circle. Numerical studies of time-dependent radiation and scattering are performed to assess the accuracy and convergence properties of the boundary conditions when implemented in the finite element method. The results demonstrate that the new formulation has dramatically improved accuracy and efficiency for time domain simulations compared to standard boundary treatments.


1971 ◽  
Vol 93 (4) ◽  
pp. 427-431 ◽  
Author(s):  
David F. Dyer ◽  
J. Edward Sunderland

A solution is obtained for the transient temperature distribution and the position of the sublimation front for freeze-drying slabs, cylinders, and spheres. The surface is exposed to thermal radiation boundary conditions so that the surface temperature is time dependent. Results, presented in dimensionless form, cover a wide range of variables that should include essentially all food products.


2018 ◽  
Vol 52 (3) ◽  
pp. 945-964 ◽  
Author(s):  
Hélène Barucq ◽  
Juliette Chabassier ◽  
Marc Duruflé ◽  
Laurent Gizon ◽  
Michael Leguèbe

This work offers some contributions to the numerical study of acoustic waves propagating in the Sun and its atmosphere. The main goal is to provide boundary conditions for outgoing waves in the solar atmosphere where it is assumed that the sound speed is constant and the density decays exponentially with radius. Outgoing waves are governed by a Dirichlet-to-Neumann map which is obtained from the factorization of the Helmholtz equation expressed in spherical coordinates. For the purpose of extending the outgoing wave equation to axisymmetric or 3D cases, different approximations are implemented by using the frequency and/or the angle of incidence as parameters of interest. This results in boundary conditions called atmospheric radiation boundary conditions (ARBC) which are tested in ideal and realistic configurations. These ARBCs deliver accurate results and reduce the computational burden by a factor of two in helioseismology applications.


Sign in / Sign up

Export Citation Format

Share Document