scholarly journals Steady-state bifurcation and Hopf bifurcation for a diffusive Leslie–Gower predator–prey model

2015 ◽  
Vol 70 (12) ◽  
pp. 3043-3056 ◽  
Author(s):  
Shanbing Li ◽  
Jianhua Wu ◽  
Hua Nie
2018 ◽  
Vol 28 (11) ◽  
pp. 1850140 ◽  
Author(s):  
Yongli Cai ◽  
Zhanji Gui ◽  
Xuebing Zhang ◽  
Hongbo Shi ◽  
Weiming Wang

In this paper, we investigate the spatiotemporal dynamics of a Leslie–Gower predator–prey model incorporating a prey refuge subject to the Neumann boundary conditions. We mainly consider Hopf bifurcation and steady-state bifurcation which bifurcate from the constant positive steady-state of the model. In the case of Hopf bifurcation, by the center manifold theory and the normal form method, we establish the bifurcation direction and stability of bifurcating periodic solutions; in the case of steady-state bifurcation, by the local and global bifurcation theories, we prove the existence of the steady-state bifurcation, and find that there are two typical bifurcations, Turing bifurcation and Turing–Hopf bifurcation. Via numerical simulations, we find that the model exhibits not only stationary Turing pattern induced by diffusion which is dependent on space and independent of time, but also temporal periodic pattern induced by Hopf bifurcation which is dependent on time and independent of space, and spatiotemporal pattern induced by Turing–Hopf bifurcation which is dependent on both time and space. These results may enrich the pattern formation in the predator–prey model.


2019 ◽  
Vol 29 (04) ◽  
pp. 1950043 ◽  
Author(s):  
Shanshan Chen ◽  
Junjie Wei ◽  
Kaiqi Yang

The diffusive Holling–Tanner predator–prey model with no-flux boundary conditions and nonlocal prey competition is considered in this paper. We show the existence of spatially nonhomogeneous periodic solutions, which is induced by nonlocal prey competition. In particular, the constant positive steady state may lose the stability through Hopf bifurcation when the given parameter passes through some critical values, and the bifurcating periodic solutions near such values could be spatially nonhomogeneous and orbitally asymptotically stable.


2020 ◽  
Vol 30 (14) ◽  
pp. 2050204
Author(s):  
Wei-Qin Zuo ◽  
Zhan-Ping Ma ◽  
Zhi-Bo Cheng

This paper is devoted to study the spatiotemporal dynamics of a diffusive Leslie–Gower predator–prey model with Michaelis-Menten type harvesting in the prey population. The existence and stability of possible non-negative constant equilibria are investigated. By regarding [Formula: see text] as a bifurcation parameter, the Hopf bifurcation from the positive constant equilibrium solution is investigated. The necessary and sufficient conditions of Turing instability are explicitly obtained. We show that at the critical value of the bifurcation parameter [Formula: see text] a Turing bifurcation occurs (i.e. a pattern arises). The conditions for the stability of the pattern are also derived in detail. Moreover, the global steady state bifurcation from the positive constant equilibrium solution is investigated. In particular, the local steady state bifurcation from double zero eigenvalues is also obtained by the techniques of space decomposition and the implicit function theorem. Our results show that Michaelis–Menten type harvesting in our model plays a crucial role in the formation of spatiotemporal dynamics, which is a strong contrast to the case without harvesting.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 785
Author(s):  
Hasan S. Panigoro ◽  
Agus Suryanto ◽  
Wuryansari Muharini Kusumawinahyu ◽  
Isnani Darti

In this paper, we consider a fractional-order eco-epidemic model based on the Rosenzweig–MacArthur predator–prey model. The model is derived by assuming that the prey may be infected by a disease. In order to take the memory effect into account, we apply two fractional differential operators, namely the Caputo fractional derivative (operator with power-law kernel) and the Atangana–Baleanu fractional derivative in the Caputo (ABC) sense (operator with Mittag–Leffler kernel). We take the same order of the fractional derivative in all equations for both senses to maintain the symmetry aspect. The existence and uniqueness of solutions of both eco-epidemic models (i.e., in the Caputo sense and in ABC sense) are established. Both models have the same equilibrium points, namely the trivial (origin) equilibrium point, the extinction of infected prey and predator point, the infected prey free point, the predator-free point and the co-existence point. For a model in the Caputo sense, we also show the non-negativity and boundedness of solution, perform the local and global stability analysis and establish the conditions for the existence of Hopf bifurcation. It is found that the trivial equilibrium point is a saddle point while other equilibrium points are conditionally asymptotically stable. The numerical simulations show that the solutions of the model in the Caputo sense strongly agree with analytical results. Furthermore, it is indicated numerically that the model in the ABC sense has quite similar dynamics as the model in the Caputo sense. The essential difference between the two models is the convergence rate to reach the stable equilibrium point. When a Hopf bifurcation occurs, the bifurcation points and the diameter of the limit cycles of both models are different. Moreover, we also observe a bistability phenomenon which disappears via Hopf bifurcation.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Heping Jiang ◽  
Huiping Fang ◽  
Yongfeng Wu

Abstract This paper mainly aims to consider the dynamical behaviors of a diffusive delayed predator–prey system with Smith growth and herd behavior subject to the homogeneous Neumann boundary condition. For the analysis of the predator–prey model, we have studied the existence of Hopf bifurcation by analyzing the distribution of the roots of associated characteristic equation. Then we have proved the stability of the periodic solution by calculating the normal form on the center of manifold which is associated to the Hopf bifurcation points. Some numerical simulations are also carried out in order to validate our analysis findings. The implications of our analytical and numerical findings are discussed critically.


Sign in / Sign up

Export Citation Format

Share Document