scholarly journals Error analysis of primal discontinuous Galerkin methods for a mixed formulation of the Biot equations

2017 ◽  
Vol 73 (4) ◽  
pp. 666-683 ◽  
Author(s):  
Béatrice Rivière ◽  
Jun Tan ◽  
Travis Thompson
2014 ◽  
Vol 14 (1) ◽  
pp. 71-87 ◽  
Author(s):  
Thirupathi Gudi ◽  
Kamana Porwal

Abstract. We revisit the a posteriori error analysis of discontinuous Galerkin methods for the obstacle problem derived in [Math. Comput. (2013), DOI 10.1090/S0025-5718-2013-02728-7]. Under a mild assumption on the trace of obstacle, we derive a reliable a posteriori error estimator which does not involve min/max functions. A key in this approach is an auxiliary problem with discrete obstacle. Applications to various discontinuous Galerkin finite element methods are presented. Numerical experiments show that the new estimator obtained in this article performs better.


Author(s):  
Silvia Bertoluzza ◽  
Ilaria Perugia ◽  
Daniele Prada

In this paper, we introduce a new stabilization for discontinuous Galerkin methods for the Poisson problem on polygonal meshes, which induces optimal convergence rates in the polynomial approximation degree [Formula: see text]. The stabilization is obtained by penalizing, in each mesh element [Formula: see text], a residual in the norm of the dual of [Formula: see text]. This negative norm is algebraically realized via the introduction of new auxiliary spaces. We carry out a [Formula: see text]-explicit stability and error analysis, proving [Formula: see text]-robustness of the overall method. The theoretical findings are demonstrated in a series of numerical experiments.


Sign in / Sign up

Export Citation Format

Share Document