high wave number
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 9)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Neal A Crocker ◽  
Shawn X Tang ◽  
Kathreen E Thome ◽  
Jeff Lestz ◽  
Elena Belova ◽  
...  

Abstract Novel internal measurements and analysis of ion cyclotron frequency range fast-ion driven modes in DIII-D are presented. Observations, including internal density fluctuation (ñ) measurements obtained via Doppler Backscattering, are presented for modes at low harmonics of the ion cyclotron frequency localized in the edge. The measurements indicate that these waves, identified as coherent Ion Cyclotron Emission (ICE), have high wave number, _⊥ρ_fast ≳ 1, consistent with the cyclotron harmonic wave branch of the magnetoacoustic cyclotron instability (MCI), or electrostatic instability mechanisms. Measurements show extended spatial structure (at least ~ 1/6 the minor radius). These edge ICE modes undergo amplitude modulation correlated with edge localized modes (ELM) that is qualitatively consistent with expectations for ELM-induced fast-ion transport.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 248
Author(s):  
Sencer Yücesan ◽  
Daniel Wildt ◽  
Philipp Gmeiner ◽  
Johannes Schobesberger ◽  
Christoph Hauer ◽  
...  

A systematic variation of the exposure level of a spherical particle in an array of multiple spheres in a high Reynolds number turbulent open-channel flow regime was investigated while using the Large Eddy Simulation method. Our numerical study analysed hydrodynamic conditions of a sediment particle based on three different channel configurations, from full exposure to zero exposure level. Premultiplied spectrum analysis revealed that the effect of very-large-scale motion of coherent structures on the lift force on a fully exposed particle resulted in a bi-modal distribution with a weak low wave number and a local maximum of a high wave number. Lower exposure levels were found to exhibit a uni-modal distribution.


Author(s):  
Martin Geier ◽  
Stephan Lenz ◽  
Martin Schönherr ◽  
Manfred Krafczyk

AbstractWe present a comprehensive analysis of the cumulant lattice Boltzmann model with the three-dimensional Taylor–Green vortex benchmark at Reynolds number 1600. The cumulant model is investigated in several different variants, using regularization, fourth-order convergent diffusion and fourth-order convergent advection with and without limiters. In addition, a cumulant model combined with a WALE sub-grid scale model is being evaluated. The turbulence model is found to filter out the high wave number contributions from the energy spectrum and the enstrophy, while the non-filtered cumulant methods show good correspondence to spectral simulations even for the high wave numbers. The application of the WALE turbulence model appears to be counter productive for the Taylor–Green vortex at a Reynolds number of 1600. At much higher Reynolds numbers ($${\hbox {Re}}=160{,}000$$ Re = 160 , 000 ) a deviation from the ideal Kolmogorov theory can be observed in the absence of an explicit turbulence model. Cumulant models with fourth-order convergent diffusion show much better results than single relaxation time methods.


2020 ◽  
Vol 82 (1) ◽  
Author(s):  
Tomas Lundquist ◽  
Jan Nordström

AbstractHigh frequency errors are always present in numerical simulations since no difference stencil is accurate in the vicinity of the $$\pi $$π-mode. To remove the defective high wave number information from the solution, artificial dissipation operators or filter operators may be applied. Since stability is our main concern, we are interested in schemes on summation-by-parts (SBP) form with weak imposition of boundary conditions. Artificial dissipation operators preserving the accuracy and energy stability of SBP schemes are available. However, for filtering procedures it was recently shown that stability problems may occur, even for originally energy stable (in the absence of filtering) SBP based schemes. More precisely, it was shown that even the sharpest possible energy bound becomes very weak as the number of filtrations grow. This suggest that successful filtering include a delicate balance between the need to remove high frequency oscillations (filter often) and the need to avoid possible growth (filter seldom). We will discuss this problem and propose a remedy.


Fluids ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 46 ◽  
Author(s):  
Hideaki Miura

Incompressible magnetohydrodynamic (MHD) turbulence under influences of the Hall and the gyro-viscous terms was studied by means of direct numerical simulations of freely decaying, homogeneous and approximately isotropic turbulence. Numerical results were compared among MHD, Hall MHD, and extended MHD models focusing on differences of Hall and extended MHD turbulence from MHD turbulence at a fully relaxed state. Magnetic and kinetic energies, energy spectra, energy transfer, vorticity and current structures were studied. The Hall and gyro-viscous terms change the energy transfer in the equations of motions to be forward-transfer-dominant while the magnetic energy transfer remains backward-transfer-dominant. The gyro-viscosity works as a kind of hyper-diffusivity, attenuating the kinetic energy spectrum sharply at a high wave-number region. However, this term also induces high-vorticity events more frequently than MHD turbulence, making the turbulent field more intermittent. Vortices and currents were found to be transformed from sheet to tubular structures under the influences of the Hall and/or the gyro-viscous terms. These observations highlight features of fluid-dynamic aspect of turbulence in sub-ion-scales where turbulence is governed by the ion skin depth and ion Larmor radius.


2017 ◽  
Vol 22 (1) ◽  
pp. 133-156 ◽  
Author(s):  
Yu Du ◽  
Zhimin Zhang

AbstractWe study the error analysis of the weak Galerkin finite element method in [24, 38] (WG-FEM) for the Helmholtz problem with large wave number in two and three dimensions. Using a modified duality argument proposed by Zhu and Wu, we obtain the pre-asymptotic error estimates of the WG-FEM. In particular, the error estimates with explicit dependence on the wave numberkare derived. This shows that the pollution error in the brokenH1-norm is bounded byunder mesh conditionk7/2h2≤C0or (kh)2+k(kh)p+1≤C0, which coincides with the phase error of the finite element method obtained by existent dispersion analyses. Herehis the mesh size,pis the order of the approximation space andC0is a constant independent ofkandh. Furthermore, numerical tests are provided to verify the theoretical findings and to illustrate the great capability of the WG-FEM in reducing the pollution effect.


Sign in / Sign up

Export Citation Format

Share Document