Topology optimization applied to 3D rotor flow path design based on the continuous adjoint approach

2021 ◽  
Vol 96 ◽  
pp. 16-30
Author(s):  
Carlos M. Okubo ◽  
César Y. Kiyono ◽  
Luís F.N. Sá ◽  
Emílio C.N. Silva
1970 ◽  
Vol 92 (3) ◽  
pp. 287-300 ◽  
Author(s):  
O. E. Balje´

The flow conditions in a mixed flow rotor are investigated for a “pressure balanced” flow path design. Boundary layer arguments are applied to calculate the losses in the rotor as well as in the subsequent diffuser section. The resulting efficiency data imply a comparatively high efficiency potential for mixed flow compressors with multiple cascaded components, designed on the premise of a “pressure balanced” rotor flow path.


Author(s):  
Kenneth J. Kelly ◽  
Gregory C. Pacifico ◽  
Michael Penev ◽  
Andreas Vlahinos

The National Renewable Energy Laboratory (NREL) and Plug Power Inc. have been working together to develop fuel cell modeling processes to rapidly assess critical design parameters and evaluate the effects of variation on performance. This paper describes a methodology for investigating key design parameters affecting the thermal performance of a high temperature, polybenzimidazole (PBI)-based fuel cell stack. Nonuniform temperature distributions within the fuel cell stack may cause degraded performance, induce thermo-mechanical stresses, and be a source of reduced stack durability. The three-dimensional (3-D) model developed for this project includes coupled thermal/flow finite element analysis (FEA) of a multi-cell stack integrated with an electrochemical model to determine internal heat generation rates. Sensitivity and optimization algorithms were used to examine the design and derive the best choice of the design parameters. Initial results showed how classic design-of-experiment (DOE) techniques integrated with the model were used to define a response surface and perform sensitivity studies on heat generation rates, fluid flow, bipolar plate channel geometry, fluid properties, and plate thermal material properties. Probabilistic design methods were used to assess the robustness of the design in response to variations in load conditions. The thermal model was also used to develop an alternative coolant flow-path design that yields improved thermal performance. Results from this analysis were recently incorporated into the latest Plug Power coolant flow-path design. This paper presents an evaluation of the effect of variation on key design parameters such as coolant and gas flow rates and addresses uncertainty in material thermal properties.


Fluids ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 31 ◽  
Author(s):  
Shenan Grossberg ◽  
Daniel S. Jarman ◽  
Gavin R. Tabor

The continuous adjoint approach is a technique for calculating the sensitivity of a flow to changes in input parameters, most commonly changes of geometry. Here we present for the first time the mathematical derivation of the adjoint system for multiphase flow modeled by the commonly used drift flux equations, together with the adjoint boundary conditions necessary to solve a generic multiphase flow problem. The objective function is defined for such a system, and specific examples derived for commonly used settling velocity formulations such as the Takacs and Dahl models. We also discuss the use of these equations for a complete optimisation process.


1991 ◽  
Vol 29 (9) ◽  
pp. 1725-1732 ◽  
Author(s):  
DAVID SINRIECH ◽  
J. M. A. TANCHOCO

AIAA Journal ◽  
2007 ◽  
Vol 45 (9) ◽  
pp. 2125-2139 ◽  
Author(s):  
Carlos Castro ◽  
Carlos Lozano ◽  
Francisco Palacios ◽  
Enrique Zuazua

Sign in / Sign up

Export Citation Format

Share Document