Loss and Flow Path Studies on Centrifugal Compressors—Part II

1970 ◽  
Vol 92 (3) ◽  
pp. 287-300 ◽  
Author(s):  
O. E. Balje´

The flow conditions in a mixed flow rotor are investigated for a “pressure balanced” flow path design. Boundary layer arguments are applied to calculate the losses in the rotor as well as in the subsequent diffuser section. The resulting efficiency data imply a comparatively high efficiency potential for mixed flow compressors with multiple cascaded components, designed on the premise of a “pressure balanced” rotor flow path.

Author(s):  
C. Arcoumanis ◽  
I. Hakeem ◽  
L. Khezzar ◽  
R. F. Martinez-Botas ◽  
N. C. Baines

The performance of a high pressure ratio (P.R.=2.9) mixed flow turbine for an automotive turbocharger has been investigated and the results revealed its better performance relative to a radial-inflow geometry under both steady and pulsating flow conditions. The advantages offered by the constant blade angle rotor allow better turbocharger-engine matching and maximization of the energy extracted from the pulsating engine exhaust gases. In particular, the mixed inlet blade geometry resulted in high efficiency at high expansion ratios where the engine-exhaust pulse energy is maximum. The efficiency characteristics of the mixed flow turbine under steady conditions were found to be fairly uniform when plotted against the velocity ratio, with a peak efficiency at the design speed of 0.75. The unsteady performance as indicated by the mass-averaged total-to-static efficiency and the swallowing capacity exhibited a departure from the quasi-steady assumption which is analysed and discussed.


2021 ◽  
Vol 96 ◽  
pp. 16-30
Author(s):  
Carlos M. Okubo ◽  
César Y. Kiyono ◽  
Luís F.N. Sá ◽  
Emílio C.N. Silva

1970 ◽  
Vol 92 (3) ◽  
pp. 275-286 ◽  
Author(s):  
O. E. Balje´

Relations are derived for the boundary layer momentum thickness growth in channels with adverse pressure gradients and for the maximum allowable momentum thickness to avoid flow separation. These data are obtained by integrating the Truckenbrodt equation stepwise and by extending the Gruschwitz-Schmidbauer separation criterion. Fair agreement between calculated data and test information is demonstrated.


1991 ◽  
Author(s):  
A. Weber ◽  
W. Steinert ◽  
H. Starken

Efforts to reduce the specific fuel consumption of a modern aero engine focus in particular on increasing the by-pass ratio beyond the current level of around 5. One concept is the counterrotating shrouded propfan operating at low overall pressure ratio and having only very few fan blades of extremely high pitch/chord ratios. The relative inlet Mach numbers cover a range from 0.7 at the hub to 1.1 at the tip section of the first rotor. A propfan cascade was designed by taking into account two characteristic features of a propfan blade-blade section: • a very high pitch/chord ratio of s/c = 2.25 • an inlet Mach number of M1 = 0.90 which leads to transonic flow conditions inside the blade passage In the design process a profile generator and a quasi-3D Euler solver were used iteratively to optimize the profile Mach number distribution. Boundary layer behavior was checked with an integral boundary layer code. The cascade design was verified experimentally in the transonic cascade wind tunnel of DLR at Cologne. The extensive experimental results confirm the design goal of roughly 5 degree flow turning. A total pressure loss coefficient of less than 1.5% was measured at design conditions. This validates the very high efficiency level the propfan concept is calling for. A 2D Navier-Stokes flow analysis code yields good results in comparison to the experimental ones.


Author(s):  
Kenneth J. Kelly ◽  
Gregory C. Pacifico ◽  
Michael Penev ◽  
Andreas Vlahinos

The National Renewable Energy Laboratory (NREL) and Plug Power Inc. have been working together to develop fuel cell modeling processes to rapidly assess critical design parameters and evaluate the effects of variation on performance. This paper describes a methodology for investigating key design parameters affecting the thermal performance of a high temperature, polybenzimidazole (PBI)-based fuel cell stack. Nonuniform temperature distributions within the fuel cell stack may cause degraded performance, induce thermo-mechanical stresses, and be a source of reduced stack durability. The three-dimensional (3-D) model developed for this project includes coupled thermal/flow finite element analysis (FEA) of a multi-cell stack integrated with an electrochemical model to determine internal heat generation rates. Sensitivity and optimization algorithms were used to examine the design and derive the best choice of the design parameters. Initial results showed how classic design-of-experiment (DOE) techniques integrated with the model were used to define a response surface and perform sensitivity studies on heat generation rates, fluid flow, bipolar plate channel geometry, fluid properties, and plate thermal material properties. Probabilistic design methods were used to assess the robustness of the design in response to variations in load conditions. The thermal model was also used to develop an alternative coolant flow-path design that yields improved thermal performance. Results from this analysis were recently incorporated into the latest Plug Power coolant flow-path design. This paper presents an evaluation of the effect of variation on key design parameters such as coolant and gas flow rates and addresses uncertainty in material thermal properties.


Author(s):  
Harold Sun ◽  
Dave Hanna ◽  
Liangjun Hu ◽  
Eric Curtis ◽  
James Yi ◽  
...  

Heavy EGR required on diesel engines for future emission regulation compliance has posed a big challenge to conventional turbocharger technology for high efficiency and wide operation range. This study, as part of the U.S. Department of Energy sponsored research program, is focused on advanced turbocharger technologies that can improve turbocharger efficiency on customer driving cycles while extending the operation range significantly, compared to a production turbocharger. The production turbocharger for a medium-duty truck application was selected as a donor turbo. Design optimizations were focused on the compressor impeller and turbine wheel. On the compressor side, advanced impeller design with arbitrary surface can improve the efficiency and surge margin at low end while extending the flow capacity, while a so-called active casing treatment can provide additional operation range extension without compromising compressor efficiency. On the turbine side, mixed flow turbine technology was revisited with renewed interest due to its performance characteristics, i.e. high efficiency at low-speed ratio, relative to the base conventional radial flow turbine, which is relevant to heavy EGR operation for future diesel applications. The engine dynamometer test shows that the advanced turbocharger technology enables over 3% BSFC improvement at part-load as well as full-load condition, in addition to an increase in rated power. The performance improvement demonstrated on engine dynamometer seems to be more than what would typically be translated from the turbocharger flow bench data, indicating that mixed flow turbine may provide additional performance benefits under pulsed exhaust flow on an internal combustion engine and in the low-speed ratio areas that are typically not covered by steady state flow bench tests.


Author(s):  
Huashu Dou

The flow losses in the veneless diffusers of centrifugal compressors is investigated. It is found that the total energy loss in vaneless diffusers is a function of Bsin2 α0 when inlet flow conditions and radius ratio between inlet and outlet are given. A wall friction coefficient equation is derived and a method of predicting the total energy loss excepting mixing loss is presented. A comparison is made between results obtained from this method and experimental data generated by the author as well as data from the literature. Good agreement is obtained.


Sign in / Sign up

Export Citation Format

Share Document