A systematic study of the stability, electronic and optical properties of beryllium and nitrogen co-doped graphene

Carbon ◽  
2018 ◽  
Vol 129 ◽  
pp. 207-227 ◽  
Author(s):  
O. Olaniyan ◽  
R.E. Maphasha ◽  
M.J. Madito ◽  
A.A. Khaleed ◽  
E. Igumbor ◽  
...  
Optik ◽  
2020 ◽  
Vol 223 ◽  
pp. 165547
Author(s):  
Junqi Wang ◽  
Yanmin Zhang ◽  
Linbo Tian ◽  
Heng Wang ◽  
Tao Wang ◽  
...  

2011 ◽  
Vol 10 (01n02) ◽  
pp. 341-344
Author(s):  
P. S. YADAV ◽  
D. K. PANDEY ◽  
S. AGRAWAL ◽  
B. K. AGRAWAL

The stability, structural, electronic, and optical properties have been studied for most stable zinc sulfide nanoclusters Zn x S y (x + y = n = 2 to 4). A B3LYP-DFT/6-311G(3df) method is employed to optimize the geometries, and a TDDFT method is used for the study of the optical properties. The binding energies (BE), HOMO–LUMO gaps and the bond lengths have been obtained for all the clusters. We have considered also the zero point energy (ZPE) corrections ignored by the earlier workers. For a fixed value of n, we designate the most stable structure the one, which has maximum final binding energy per atom. The adiabatic and vertical ionization potentials (IP) and electron affinities (EA), charge on atoms, dipole moment, and optical properties have been investigated for the most stable structures. The nanoclusters containing large number of S atoms for each "n" are found to be most stable. Except for ZnS nanocluster, the HOMO–LUMO gap increases with the number of S atoms. Similarly, except for ZnS , IP and EA fluctuate with the cluster size but reveal downward trend. The optical absorption is quite weak in visible region but is strong in the ultraviolet region in most of the nanoclusters except a few. The growth of most stable nanoclusters may be possible in the experiments.


2014 ◽  
Vol 38 (9) ◽  
pp. 4615-4621 ◽  
Author(s):  
Ben-Xing Zhang ◽  
Hui Gao ◽  
Xiao-Long Li

Schematic and digital photos of the preparation for water-soluble nitrogen (N) and sulfur (S) co-doped graphene quantum dots (NS-GQDs). Sulfur enhances the photoluminescence of NS-GQDs.


Sign in / Sign up

Export Citation Format

Share Document