Carbon nitrides as cathode materials for aluminium ion Batteries

Carbon ◽  
2021 ◽  
Author(s):  
Shaikat Debnath ◽  
Marcos Horscheck-Diaz ◽  
Debra J. Searles ◽  
Marlies Hankel
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kaiqiang Zhang ◽  
Tae Hyung Lee ◽  
Joo Hwan Cha ◽  
Ho Won Jang ◽  
Ji-Won Choi ◽  
...  

Abstract The use of metal oxides as electrode materials has seen great success in lithium-ion batteries. However, this type of electrode materials has been regarded as an improper option for rechargeable aluminium-ion batteries (AIBs) in comparison with sulfides and selenides, and has, thus, been nearly abandoned. Here, we demonstrate the suitability of metal oxides as cathode materials of AIBs, exhibiting high electrochemical activities toward Al-ion storage. We designed economical metal-oxide cathodes (Co3O4@reduced graphene oxide (rGO), Fe2O3@rGO, and CoFe2O4@rGO) for AIBs. The Co3O4@rGO displayed superior electrochemical properties, regarding both capacity and lifespan, to the current state-of-the-art cathode material reported by scientific literature. Furthermore, the CoFe2O4@rGO exhibits rational electrochemical capacities and an extremely stable charge/discharge process with an excellent Coulombic efficiency of 99.6%. The proposed study expects to stimulate researchers to focus on the overlooked metal oxides as competitive cathode materials for high performance AIBs.


1990 ◽  
Vol 51 (C5) ◽  
pp. C5-403-C5-410
Author(s):  
A. A. SADEK ◽  
K. KUSUMOTO ◽  
M. USHIO ◽  
F. MATSUDA

2019 ◽  
Author(s):  
Florian Strauss ◽  
Lea de Biasi ◽  
A-Young Kim ◽  
Jonas Hertle ◽  
Simon Schweidler ◽  
...  

Measures to improve the cycling performance and stability of bulk-type all-solid-state batteries (SSBs) are currently being developed with the goal of substituting conventional Li-ion battery (LIB) technology. As known from liquid electrolyte based LIBs, layered oxide cathode materials undergo volume changes upon (de)lithiation, causing mechanical degradation due to particle fracture, among others. Unlike solid electrolytes, liquid electrolytes are somewhat capable of accommodating morphological changes. In SSBs, the rigidity of the materials used typically leads to adverse contact loss at the interfaces of cathode material and solid electrolyte during cycling. Hence, designing zero- or low-strain electrode materials for application in next-generation SSBs is desirable. In the present work, we report on novel Co-rich NCMs, NCM361 (60% Co) and NCM271 (70% Co), showing minor volume changes up to 4.5 V vs Li<sup>+</sup>/Li, as determined by <i>operando</i> X-ray diffraction and pressure measurements of LIB pouch and pelletized SSB cells, respectively. Both cathode materials exhibit good cycling performance when incorporated into SSB cells using argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolyte, albeit their morphology and secondary particle size have not yet been optimized.


2019 ◽  
Author(s):  
Florian Strauss ◽  
Lea de Biasi ◽  
A-Young Kim ◽  
Jonas Hertle ◽  
Simon Schweidler ◽  
...  

Measures to improve the cycling performance and stability of bulk-type all-solid-state batteries (SSBs) are currently being developed with the goal of substituting conventional Li-ion battery (LIB) technology. As known from liquid electrolyte based LIBs, layered oxide cathode materials undergo volume changes upon (de)lithiation, causing mechanical degradation due to particle fracture, among others. Unlike solid electrolytes, liquid electrolytes are somewhat capable of accommodating morphological changes. In SSBs, the rigidity of the materials used typically leads to adverse contact loss at the interfaces of cathode material and solid electrolyte during cycling. Hence, designing zero- or low-strain electrode materials for application in next-generation SSBs is desirable. In the present work, we report on novel Co-rich NCMs, NCM361 (60% Co) and NCM271 (70% Co), showing minor volume changes up to 4.5 V vs Li<sup>+</sup>/Li, as determined by <i>operando</i> X-ray diffraction and pressure measurements of LIB pouch and pelletized SSB cells, respectively. Both cathode materials exhibit good cycling performance when incorporated into SSB cells using argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolyte, albeit their morphology and secondary particle size have not yet been optimized.


2018 ◽  
Vol 28 (5) ◽  
pp. 273-278
Author(s):  
Beomhee Kang ◽  
Soonhyun Hong ◽  
Hongkwan Yoon ◽  
Dojin Kim ◽  
Chunjoong Kim

2020 ◽  
Vol 30 (11) ◽  
pp. 636-640
Author(s):  
Seonhye Park ◽  
Soonhyun Hong ◽  
Hyeonggwon Jeon ◽  
Chunjoong Kim

1985 ◽  
Vol 16 (7) ◽  
Author(s):  
C. E. BAUMGARTNER ◽  
R. H. ARENDT ◽  
C. D. IACOVANGELO ◽  
B. R. KARAS

Sign in / Sign up

Export Citation Format

Share Document