mechanical degradation
Recently Published Documents


TOTAL DOCUMENTS

704
(FIVE YEARS 209)

H-INDEX

43
(FIVE YEARS 10)

2022 ◽  
Vol 10 (1) ◽  
pp. 13
Author(s):  
Tomas Vilde ◽  
Cameron A. Stewart ◽  
Yoav Finer

Despite their popularity, resin composite restorations fail earlier and at higher rates than comparable amalgam restorations. One of the reasons for these rates of failure are the properties of current dental bonding agents. Modern bonding agents are vulnerable to gradual chemical and mechanical degradation from a number of avenues such as daily use in chewing, catalytic hydrolysis facilitated by salivary or bacterial enzymes, and thermal fluctuations. These stressors have been found to work synergistically, all contributing to the deterioration and eventual failure of the hybrid layer. Due to the expense and difficulty in conducting in vivo experiments, in vitro protocols meant to accurately simulate the oral environment’s stressors are important in the development of bonding agents and materials that are more resistant to these processes of degradation. This narrative review serves to summarize the currently employed methods of aging dental materials and critically appraise them in the context of our knowledge of the oral environment’s parameters.


Author(s):  
Frederic Trillaud ◽  
Edgar Berrospe-Juarez ◽  
Vı́ctor M. R. Zermeño ◽  
Francesco Grilli

Abstract Second-Generation High Temperature Superconducting (2G HTS) tapes are considered to be the main candidates for the development of future ultra high DC magnetic field magnets. In such application, the usability of the HTS magnets can be strongly impaired by large screening currents developed in the flat strip of the tapes. These currents lead to the generation of a Screening Current Induced Field (SCIF) that can deteriorate the performance by affecting the stability and the homogeneity of the magnetic field. Besides the SCIF, there is also the likely mechanical degradation of the tapes under the action of large Lorentz forces. The mechanical degradation and the presence of large screening currents intertwine to affect the reliable operation of 2G HTS magnets. To study those combined issues, an electromagneto-mechanical model based on tensile mechanical characterization of short samples was built to simulate the coupled electromagnetic and mechanical behaviour of insert magnets made of 2G HTS tapes under very high magnetic field. The coupling is carried out by considering the dependence of the n index and the critical current density Jc on the local relative deformation in addition to the magnetic flux density. The case study is the Little Big Coil (LBC, version 3) which broke the world record of the strongest continuous magnetic field achieved to this date. An analysis of the electromagneto-mechanical behavior of the LBC is conducted on the basis of information extracted from literature to show that the proposed model can assess the current magnitude at which the insert magnet quenched. Additionally, it is shown that the model can also provide some insights on the impact of the mechanical degradation of the tape on the SCIF hysteresis loop. The studies are conducted on the original LBC and on versions that include additional modifications such as harnessing and co- winding with rigid metallic tapes. These modifications are employed to limit the mechanical degradation of the HTS insert magnet under ultra high magnetic field. They are expected to deliver extra safety margin to 2G HTS insert magnets.


Author(s):  
Ying Chen ◽  
Weiling Luan ◽  
Xuanchen Zhu ◽  
Haofeng Chen

Abstract LiNixMnyCozO2 (NMC) is among the most promising cathode materials for commercial Li-ion batteries due to its high electrochemical performance. However, NMC composite cathode is still plagued with limited cyclic performance, which is influenced by its structural stability during the cycling process. The cathode, which comprises of the active material, polymeric binder, and porous conductive matrix, often exhibits large structural variation during the electrochemical cycling process. This inevitably increases the challenge of measuring the mechanical properties of the material. Even though single crystal NMC possesses better stability as compared to the polycrystalline NMC, the electrochemical performance degradation of single crystal NMC cathode remains relatively unexplored. Different sample preparation methods are compared systematically in accordance to the previous report, and a new method of sample preparation is proposed. Nanoindentation instrument is used to measure the elastic modulus and hardness of the single crystal NMC particles. The measured elastic modulus and hardness of NMC particles, under different electrochemical environments, are dependent on a large number of nanoindentation experiments and statistical analysis of the result obtained from the carefully prepared samples. The sample preparation method is the key factor that can significantly influence the nanoindentation experiment results of the NMC particles. This work shows that the mechanical properties of the single crystal NMC particles degrade significantly with number of electrochemical cycles. The decreasing elastic modulus with the number of electrochemical cycles can be fitted using a two-parameter logarithm model.


Author(s):  
Xing-Yu Zhang ◽  
Yinhua Bao ◽  
Jian Chen ◽  
Hao-Sen Chen

Abstract Understanding and alleviating the chemo-mechanical degradation of silicon anodes is a formidable challenge due to the large volume change during operations. Here, for a comprehensive understanding of heterogeneous effects on chemo-mechanical behaviors at the single-particle level, in-situ observation of single-crystalline silicon micropillar electrodes under the inhomogeneous extrinsic conditions, taken as an example, was made. The observation shows that the anisotropic deformation patterns and fracture starting sites are reshaped with the combination of the inhomogeneous electrochemical driving force for charge transfer at the interface between the silicon micropillar and the electrolyte, and crystal orientation-dependent lithiation dynamics. Also, the numerical simulation unravels the underlying mechanisms of deformation and fracture behaviors, and well predicts the relative depth of lithiation at the time of crack initiation under heterogeneous conditions. The results show that heterogeneities arising from extrinsic conditions may induce inhomogeneous mechanical damage and tailor lithiation degree at an active particle level, offering insights into designing large-volume-change battery particles with good mechanical integrity and electrochemical performance under heterogeneous impacts.


2022 ◽  
Author(s):  
Bertan Ozdogru ◽  
Shubhankar Padwal ◽  
Batuhan Bal ◽  
Sandip Harimkar ◽  
Behrad Koohbor ◽  
...  

Chemo-mechanical degradation at the solid electrolyte – Li metal electrode interface is a bottleneck to improve cycle life of all-solid state Li-metal batteries. In this study, in operando digital image correlation (DIC) measurements provided temporal and spatial resolution of the chemo-mechanical deformations in LAGP solid electrolyte during the symmetrical cell cycling. The increase in strains in the interphase layer was correlated with the overpotential. The sudden increase in strains coincides with the mechanical fracture in LAGP detected by Micro CT. This work highlights the mechanical deformations in LAGP / Li interface and its coupling with the electrochemical behavior of the battery.


SPE Journal ◽  
2022 ◽  
pp. 1-18
Author(s):  
Marat Sagyndikov ◽  
Randall Seright ◽  
Sarkyt Kudaibergenov ◽  
Evgeni Ogay

Summary During a polymer flood, the field operator must be convinced that the large chemical investment is not compromised during polymer injection. Furthermore, injectivity associated with the viscous polymer solutions must not be reduced to where fluid throughput in the reservoir and oil production rates become uneconomic. Fractures with limited length and proper orientation have been theoretically argued to dramatically increase polymer injectivity and eliminate polymer mechanical degradation. This paper confirms these predictions through a combination of calculations, laboratory measurements, and field observations (including step-rate tests, pressure transient analysis, and analysis of fluid samples flowed back from injection wells and produced from offset production wells) associated with the Kalamkas oil field in Western Kazakhstan. A novel method was developed to collect samples of fluids that were back-produced from injection wells using the natural energy of a reservoir at the wellhead. This method included a special procedure and surface-equipment scheme to protect samples from oxidative degradation. Rheological measurements of back-produced polymer solutions revealed no polymer mechanical degradation for conditions at the Kalamkas oil field. An injection well pressure falloff test and a step-rate test confirmed that polymer injection occurred above the formation parting pressure. The open fracture area was high enough to ensure low flow velocity for the polymer solution (and consequently, the mechanical stability of the polymer). Compared to other laboratory and field procedures, this new method is quick, simple, cheap, and reliable. Tests also confirmed that contact with the formation rapidly depleted dissolved oxygen from the fluids—thereby promoting polymer chemical stability.


2021 ◽  
Author(s):  
Shuo Sun ◽  
Chen-Zi Zhao ◽  
Hong Yuan ◽  
Yang Lu ◽  
Jiang-Kui Hu ◽  
...  

Abstract In the crucial area of sustainable energy storage, solid-state batteries (SSBs) with nonflammable solid electrolytes stand out due to their potential benefits of enhanced safety, energy density, and cycle life. However, the complexity within the composite cathode determines that fabricating an ideal electrode needs to link chemistry (atomic scale), materials (microscopic/mesoscopic scale), and electrode system (macroscopic scale). Therefore, understiang solid-state composite cathodes covering multiple scales is of vital importance for the development of practical SSBs. In this review, the challenges and basic knowledge of composite cathodes from the atomic scale to the macroscopic scale in SSBs are outlined with a special focus on the interfacial structure, charge transport, and mechanical degradation. Based on these dilemmas, emerging strategies to design a high-performance composite cathode and advanced characterization techniques are summarized. Moreover, future perspectives toward composite cathodes are discussed, aiming to facilitate the develop energy-dense solid-state batteries.


2021 ◽  
Vol 5 (1) ◽  
pp. 72
Author(s):  
Sofia Tsouli ◽  
Angeliki G. Lekatou ◽  
Spyridon Kleftakis ◽  
Pantelis Gkoutzos ◽  
Ilias K. Tragazikis ◽  
...  

The objective of this effort is to study the effect that the combination of fly ash (FA) with a liquid corrosion inhibitor has on the mechanical degradation of 316L rebars embedded in concrete specimens during salt fog testing for a period of four months, as well as the porosity of concrete. Partial replacement of Ordinary Portland Cement (OPC) by FA (0–25%) did not significantly affect the tensile properties of 316L except a small decrease in the elastic modulus and % elongation with FA increasing. Both FA and FA-liquid inhibitor combination resulted in significant reductions in the porosity of the reinforced concrete after 4 m of salt fog testing.


2021 ◽  
Author(s):  
Mursal Zeynalli ◽  
Emad W. Al-Shalabi ◽  
Waleed AlAmeri

Abstract Being one of the most commonly used chemical EOR methods, polymer flooding can substantially improve both macroscopic and microscopic recovery efficiencies by sweeping bypassed oil and mobilizing residual oil, respectively. However, a proper estimation of incremental oil to polymer flooding requires an accurate prediction of the complex rheological response of polymers. In this paper, a novel viscoelastic model that comprehensively analyzes the polymer rheology in porous media is used in a reservoir simulator to predict the recovery efficiency to polymer flooding at both core- and field-scales. The extended viscoelastic model can capture polymer Newtonian and non-Newtonian behavior, as well as mechanical degradation that may take place at ultimate shear rates. The rheological model was implemented in an open- source reservoir simulator. In addition, the effect of polymer viscoelasticity on displacement efficiency was also captured through trapping number. The calculation of trapping number and corresponding residual-phase saturation was verified against a commercial simulator. Core-scale tertiary polymer flooding predictions revealed the positive effect of injection rate and polymer concentration on oil displacement efficiency. It was found that high polymer concentration (>2000 ppm) is needed to displace residual oil at reservoir rate as opposed to near injector well rate. On the other hand, field-scale predictions of polymer flooding were performed in a quarter 5-spot well pattern, using rock and fluid properties representing the Middle East carbonate reservoirs. The field-simulation studies showed that tertiary polymer flooding might improve both volumetric sweep efficiency and displacement efficiency. For this case study, incremental oil recovery by polymer flooding is estimated at around 11 %OOIP, which includes about 4 %OOIP residual oil mobilized by viscoelastic polymers. Furthermore, the effect of different parameters on the polymer flooding efficiency was investigated through sensitivity analysis. This study provides more insight into the robustness of the extended viscoelastic model as well as its effect on polymer injectivity and related oil recovery at both core- and field-scales. The proposed polymer viscoelastic model can be easily implemented into any commercial reservoir simulator for representative field-scale predictions of polymer flooding.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Simon Schweidler ◽  
Sören Lukas Dreyer ◽  
Ben Breitung ◽  
Torsten Brezesinski

AbstractIn recent years, high-entropy oxides are receiving increasing attention for electrochemical energy-storage applications. Among them, the rocksalt (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O (HEO) has been shown to be a promising high-capacity anode material. Because high-entropy oxides constitute a new class of electrode materials, systematic understanding of their behavior during ion insertion and extraction is yet to be established. Here, we probe the conversion-type HEO material in lithium half-cells by acoustic emission (AE) monitoring. Especially the clustering of AE signals allows for correlations of acoustic events with various processes. The initial cycle was found to be the most acoustically active because of solid-electrolyte interphase formation and chemo-mechanical degradation. In the subsequent cycles, AE was mainly detected during delithiation, a finding we attribute to the progressive crack formation and propagation. Overall, the data confirm that the AE technology as a non-destructive operando technique holds promise for gaining insight into the degradation processes occurring in battery cells during cycling.


Sign in / Sign up

Export Citation Format

Share Document