Hygroscopicity modulation of hydrogels based on carboxymethyl chitosan/Alginate polyelectrolyte complexes and its application as pH-sensitive delivery system

2018 ◽  
Vol 198 ◽  
pp. 86-93 ◽  
Author(s):  
Xiaojie Lv ◽  
Wenchang Zhang ◽  
Yunen Liu ◽  
Yan Zhao ◽  
Jinsong Zhang ◽  
...  
Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 338
Author(s):  
Ahmed M. Omer ◽  
Maha S. Ahmed ◽  
Gehan M. El-Subruiti ◽  
Randa E. Khalifa ◽  
Abdelazeem S. Eltaweil

To develop an effective pH-sensitive drug carrier, alginate (Alg), carboxymethyl chitosan (CMCs), and aminated chitosan (AmCs) derivatives were employed in this study. A simple ionic gelation technique was employed to formulate Alg-CMCs@AmCs dual polyelectrolyte complexes (PECs) microcapsules as a pH-sensitive carrier for efficient encapsulation and release of diclofenac sodium (DS) drug. The developed microcapsules were characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analyzer (TGA), and scanning electron microscope (SEM). The results clarified that formation of dual PECs significantly protected Alg microcapsules from rapid disintegration at colon conditions (pH 7.4), and greatly reduced their porosity. In addition, the dual PECs microcapsules can effectively encapsulate 95.4% of DS-drug compared to 86.3 and 68.6% for Alg and Alg-CMCs microcapsules, respectively. Higher DS-release values were achieved in simulated colonic fluid [SCF; pH 7.4] compared to those obtained in simulated gastric fluid [SGF; pH 1.2]. Moreover, the drug burst release was prevented and a sustained DS-release was achieved as the AmCs concentration increased. The results confirmed also that the developed microcapsules were biodegradable in the presence of the lysozyme enzyme. These findings emphasize that the formulated pH-sensitive microcapsules could be applied for the delivery of diclofenac sodium.


2017 ◽  
Vol 12 (1) ◽  
pp. 166-187 ◽  
Author(s):  
Wenliang Fu ◽  
Mohd Hezmee Mohd Noor ◽  
Loqman Mohamad Yusof ◽  
Tengku Azmi Tengku Ibrahim ◽  
Yeap Swee Keong ◽  
...  

2017 ◽  
Vol 177 ◽  
pp. 324-333 ◽  
Author(s):  
Seyed Mohammad Hossein Dabiri ◽  
Alberto Lagazzo ◽  
Fabrizio Barberis ◽  
Amirreza Shayganpour ◽  
Elisabetta Finocchio ◽  
...  

2018 ◽  
Vol 97 ◽  
pp. 489-495 ◽  
Author(s):  
Liziane O.F. Monteiro ◽  
Renata S. Fernandes ◽  
Caroline M.R. Oda ◽  
Sávia C. Lopes ◽  
Danyelle M. Townsend ◽  
...  

2018 ◽  
Vol 33 (2) ◽  
pp. 170-181 ◽  
Author(s):  
Hongying Su ◽  
Wen Zhang ◽  
Yayun Wu ◽  
Xiaodong Han ◽  
Gang Liu ◽  
...  

Stimuli-responsive hydrogels have been widely researched as carrier systems, due to their excellent biocompatibility and responsiveness to external physiologic environment factors. In this study, dextran-based nanogel with covalently conjugated doxorubicin (DOX) was developed via Schiff base formation using the inverse microemulsion technique. Since the Schiff base linkages are acid-sensitive, drug release profile of the DOX-loaded nanogel would be pH-dependent. In vitro drug release studies confirmed that DOX was released much faster under acidic condition (pH 2.0, 5.0) than that at pH 7.4. Approximately 66, 28, and 9% of drug was released in 72 h at pH 2.0, 5.0, and 7.4, respectively. Cell uptake by the human breast cancer cell (MCF-7) demonstrated that the DOX-loaded dextran nanogel could be internalized through endocytosis and distributed in endocytic compartments inside tumor cells. These results indicated that the Schiff base-containing nanogel can serve as a pH-sensitive drug delivery system. And the presence of multiple aldehyde groups on the nanogel are available for further conjugations of targeting ligands or imaging probes.


Sign in / Sign up

Export Citation Format

Share Document