scholarly journals Optimized hydration dynamics in mucoadhesive xanthan-based trilayer vaginal films for the controlled release of tenofovir

2021 ◽  
pp. 118958
Author(s):  
Araceli Martín-Illana ◽  
Eva Chinarro ◽  
Raul Cazorla-Luna ◽  
Fernando Notario-Perez ◽  
M.D. Veiga-Ochoa ◽  
...  
2009 ◽  
Vol 00 (00) ◽  
pp. 090805050810080-8 ◽  
Author(s):  
Handoko Adi ◽  
Paul Michael Young ◽  
Hak-Kim Chan ◽  
Rania Salama ◽  
Daniela Traini

Author(s):  
Mashkura Ashrafi ◽  
Jakir Ahmed Chowdhury ◽  
Md Selim Reza

Capsules of different formulations were prepared by using a hydrophilic polymer, xanthan gum and a filler Ludipress. Metformin hydrochloride, which is an anti-diabetic agent, was used as a model drug here with the aim to formulate sustained release capsules. In the first 6 formulations, metformin hydrochloride and xanthan gum were used in different ratio. Later, Ludipress was added to the formulations in a percentage of 8% to 41%. The total procedure was carried out by physical mixing of the ingredients and filling in capsule shells of size ‘1’. As metformin hydrochloride is a highly water soluble drug, the dissolution test was done in 250 ml distilled water in a thermal shaker (Memmert) with a shaking speed of 50 rpm at 370C &plusmn 0.50C for 6 hours. After the dissolution, the data were treated with different kinetic models. The results found from the graphs and data show that the formulations follow the Higuchian release pattern as they showed correlation coefficients greater than 0.99 and the sustaining effect of the formulations was very high when the xanthan gum was used in a very high ratio with the drug. It was also investigated that the Ludipress extended the sustaining effect of the formulation to some extent. But after a certain period, Ludipress did not show any significant effect as the pores made by the xanthan gum network were already blocked. It is found here that when the metformin hydrochloride and the xanthan gum ratio was 1:1, showed a high percentage of drug release, i.e. 91.80% of drug was released after 6 hours. But With a xanthan gum and metformin hydrochloride ratio of 6:1, a very slow release of the drug was obtained. Only 66.68% of the drug was released after 6 hours. The percent loading in this case was 14%. Again, when Ludipress was used in high ratio, it was found to retard the release rate more prominently. Key words: Metformin Hydrochloride, Xanthan Gum, Controlled release capsule Dhaka Univ. J. Pharm. Sci. Vol.4(1) 2005 The full text is of this article is available at the Dhaka Univ. J. Pharm. Sci. website


Author(s):  
Michael J. Rathbone ◽  
Keith L Macmillan ◽  
Wolfgang Jochle ◽  
Maurice P. Boland ◽  
E. Keith Inskeep

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 2279-PUB ◽  
Author(s):  
ROSITA PRIMAVERA ◽  
MIRKO MAGNONE ◽  
DANIELE DI MASCOLO ◽  
ELENA ZOCCHI ◽  
ANGELO DE PASCALE ◽  
...  

1998 ◽  
Vol 16 (3) ◽  
pp. 182-188
Author(s):  
Kelly M. Groves ◽  
Stuart L. Warren ◽  
Ted E. Bilderback

Abstract Rooted cuttings of Cotoneaster dammeri Schneid ‘Skogholm’ and seedlings of Rudbeckia fulgida Ait. ‘Goldsturm’ were potted into 3.8 liter (4 qt) containers in a pine bark:sand (8:1 by vol) substrate incorporated with 3.5 g (0.12 oz) N per container provided by one of the following five controlled-release fertilizers (CRFs): Meister 21N–3.5P–11.1K (21–7–14), Osmocote 24N–2.0P–5.6K (24–4–7), Scotts 23N–2.0P–6.4K (23–4–8), Sustane 5N–0.9P–3.3K (5–2–4) or Woodace 21N–3.0P–9.5K (21–6–12). Two hundred ml (0.3 in), 400 ml (0.6 in), 800 ml (1.1 in) or 1200 ml (1.7 in) of water was applied once daily (single) or in two equal applications with a 2 hr interval between applications (cyclic). Substrate solutions were collected from containers of cotoneaster 15, 32, 45, 60, 74, 90, 105, and 119 days after initiation (DAI). Irrigation efficiency [(water applied − water leached) ÷ water applied] was determined on the same days. Cyclic application improved irrigation efficiency at 800 ml (1.1 in) and 1200 ml (1.7 in) ≈ 27% compared to a single application. Irrigation efficiencies averaged over the season were 95%, 84%, 62%, and 48% for cotoneaster and 100%, 90%, 72%, and 51% for rudbeckia at 200 ml (0.3 in), 400 ml (0.6 in), 800 ml (1.1 in) and 1200 ml (1.7 in), respectively. NH4-N and NO3-N and PO4-P concentrations in substrate solution decreased with increasing irrigation volume regardless of CRF. Substrate NH4-N concentration decreased throughout the season with most CRFs below 5 mg/liter by 90 DAI. CRFs mainly affected substrate NH4-N and NO3-N concentrations when irrigated with 200 ml (0.3 in) or 400 ml (0.6 in). Substrate NH4-N, NO3-N, and PO4-P solution concentrations were similar for all CRFs at irrigation volume of 1200 ml (1.7 in). Osmocote, Scotts, and Woodace maintained relatively constant substrate solution levels of PO4-P through 60 DAI. By 90 DAI, substrate PO4-P levels were similar regardless of irrigation volume or CRF. Substrate PO4-P concentrations were never in the recommended range of 5 to 10 mg/liter when irrigated with 800 ml (1.1 in) or 1200 ml (1.7 in) regardless of CRF. Solution pH remained in the recommended range of 5.0 to 6.0 for all irrigation volumes and CRFs throughout the entire study with the exception of Sustane.


Author(s):  
Hamid Hussain ◽  
Divya Juyal ◽  
Archana Dhyani

Microsponge and Nanosponge delivery System was originally developed for topical delivery of drugs can also be used for controlled oral delivery of drugs using water soluble and bioerodible polymers. Microsponge delivery system (MDS) can entrap wide range of drugs and then release them onto the skin over a time by difussion mechanism to the skin. It is a unique technology for the controlled release of topical agents and consists of nano or micro porous beads loaded with active agent and also use for oral delivery of drugs using bioerodible polymers.


Sign in / Sign up

Export Citation Format

Share Document