Evaluating the potential slope plants using new method for soil reinforcement program

CATENA ◽  
2019 ◽  
Vol 180 ◽  
pp. 346-354
Author(s):  
Chaobo Zhang ◽  
Dongrong Li ◽  
Jing Jiang ◽  
Xia Zhou ◽  
Xiaoyu Niu ◽  
...  
2003 ◽  
Vol 40 (5) ◽  
pp. 976-994 ◽  
Author(s):  
T M Allen ◽  
Richard J Bathurst ◽  
Robert D Holtz ◽  
D Walters ◽  
Wei F Lee

Proper estimation of soil reinforcement loads and strains is key to accurate internal stability design of reinforced soil structures. Current design methodologies use limit equilibrium concepts to estimate reinforcement loads for internal stability design of geosynthetic and steel reinforced soil walls. For geosynthetic walls, however, it appears that these methods are excessively conservative based on the performance of geosynthetic walls to date. This paper presents a new method, called the K-stiffness method, that is shown to give more accurate estimates of reinforcement loads, thereby reducing reinforcement quantities and improving the economy of geosynthetic walls. The paper is focused on the new method as it applies to geosynthetic walls constructed with granular (noncohesive, relatively low silt content) backfill soils. A database of 11 full-scale geosynthetic walls was used to develop the new design methodology based on working stress principles. The method considers the stiffness of the various wall components and their influence on reinforcement loads. Results of simple statistical analyses show that the current American Association of State Highway and Transportation Officials (AASHTO) Simplified Method results in an average ratio of measured to predicted loads (bias) of 0.45, with a coefficient of variation (COV) of 91%, whereas the proposed method results in an average bias of 0.99 and a COV of 36%. A principle objective of the method is to design the wall reinforcement so that the soil within the wall backfill is prevented from reaching a state of failure, consistent with the notion of working stress conditions. This concept represents a new approach for internal stability design of geosynthetic-reinforced soil walls because prevention of soil failure as a limit state is considered in addition to the current practice of preventing reinforcement rupture.Key words: geosynthetics, reinforcement, walls, loads, strains, design, K-stiffness method.


Author(s):  
C. C. Clawson ◽  
L. W. Anderson ◽  
R. A. Good

Investigations which require electron microscope examination of a few specific areas of non-homogeneous tissues make random sampling of small blocks an inefficient and unrewarding procedure. Therefore, several investigators have devised methods which allow obtaining sample blocks for electron microscopy from region of tissue previously identified by light microscopy of present here techniques which make possible: 1) sampling tissue for electron microscopy from selected areas previously identified by light microscopy of relatively large pieces of tissue; 2) dehydration and embedding large numbers of individually identified blocks while keeping each one separate; 3) a new method of maintaining specific orientation of blocks during embedding; 4) special light microscopic staining or fluorescent procedures and electron microscopy on immediately adjacent small areas of tissue.


1975 ◽  
Vol 39 (12) ◽  
pp. 782-785
Author(s):  
T Aranda ◽  
JL Henry

1960 ◽  
Vol 23 ◽  
pp. 227-232 ◽  
Author(s):  
P WEST ◽  
G LYLES
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document