scholarly journals Effects of permafrost degradation on soil organic matter turnover and plant growth

CATENA ◽  
2022 ◽  
Vol 208 ◽  
pp. 105721
Author(s):  
Lina Che ◽  
Muyang Cheng ◽  
Libo Xing ◽  
Yifan Cui ◽  
Luhe Wan
2012 ◽  
Vol 18 (6) ◽  
pp. 1781-1796 ◽  
Author(s):  
Jennifer A. J. Dungait ◽  
David W. Hopkins ◽  
Andrew S. Gregory ◽  
Andrew P. Whitmore

Radiocarbon ◽  
1996 ◽  
Vol 38 (2) ◽  
pp. 181-190 ◽  
Author(s):  
Kevin G. Harrison

Although soil contains about three times the amount of carbon present in the preindustrial atmosphere, determining how perturbations (e.g., changing land use, CO2 fertilization, changing climate and anthropogenic nitrogen deposition) alter soil carbon storage and influence atmospheric CO2 levels has proved elusive. Not knowing the soil carbon turnover times causes part of this uncertainty. I outline a strategy for using radiocarbon measurements to estimate soil organic matter turnover times and inventories in native soil. The resulting estimates of carbon exchange produce reasonable agreement with measurements of CO2 fluxes from soil. Furthermore, derivatives of the model are used to explore soil carbon dynamics of cultivated and recovering soil. Because the models can reproduce observed soil 14C measurements in native, cultivated, and recovering ecosystems (i.e., the underlying assumptions appear reasonable), the native model was modified to estimate the potential rate of additional carbon storage because of CO2 fertilization. This process may account for 45–65% of the “missing CO2 sink.”


2014 ◽  
Vol 119 (3) ◽  
pp. 372-391 ◽  
Author(s):  
Maarten C. Braakhekke ◽  
Christian Beer ◽  
Marion Schrumpf ◽  
Altug Ekici ◽  
Bernhard Ahrens ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document