soil organic matter turnover
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 11)

H-INDEX

20
(FIVE YEARS 1)

CATENA ◽  
2022 ◽  
Vol 208 ◽  
pp. 105721
Author(s):  
Lina Che ◽  
Muyang Cheng ◽  
Libo Xing ◽  
Yifan Cui ◽  
Luhe Wan

Geology ◽  
2021 ◽  
Author(s):  
Yuval Burstyn ◽  
Ron Shaar ◽  
Jonathan Keinan ◽  
Yael Ebert ◽  
Avner Ayalon ◽  
...  

This study demonstrates the feasibility of speleothem magnetism as a paleo-hydrology proxy in speleothems growing in semi-arid conditions. Soil-derived magnetic particles in speleothems retain valuable information on the physicochemical conditions of the overlying soil, and changes in bedrock hydrology. Yet, the link between magnetic and isotopic proxies of speleothems has been only partly established. We reveal strong coupling between the inflow of magnetic particles (quantified using the magnetic flux index, IRMflux) and δ13C in two Holocene speleothems from Soreq Cave (Israel). The stalagmite record spans from ca. 9.7 to ca. 5.4 ka, capturing the warm-humid conditions associated with the early Holocene and the transition to mid-Holocene wet-dry cycles. Extremely low IRMflux during the early Holocene, indicating minimal contribution from the overlying soil, is accompanied by anomalously high δ13C (approaching bedrock values) hypothesized to be caused by high rainfall and soil erosion. By contrast, IRMflux during the mid-Holocene covaries with the saw-tooth cyclicity of δ13C and δ18O, interpreted as rapid fluctuations in rainfall amount. The peaks in IRMflux precede the negative (wet) δ13C peaks by ~60–120 yr. The apparent lag is explained as a rapid physical translocation of overlying soil particles via groundwater (high IRMflux) as a response to increasing rainfall, compared with slower soil organic matter turnover rates (10–102 yr).


2021 ◽  
Author(s):  
Shane W. Stoner ◽  
Alison M. Hoyt ◽  
Susan Trumbore ◽  
Carlos A. Sierra ◽  
Marion Schrumpf ◽  
...  

AbstractManaged grasslands have the potential to store carbon (C) and partially mitigate climate change. However, it remains difficult to predict potential C storage under a given soil or management practice. To study C storage dynamics due to long-term (1952–2009) phosphorus (P) fertilizer and irrigation treatments in New Zealand grasslands, we measured radiocarbon (14C) in archived soil along with observed changes in C stocks to constrain a compartmental soil model. Productivity increases from P application and irrigation in these trials resulted in very similar C accumulation rates between 1959 and 2009. The ∆14C changes over the same time period were similar in plots that were both irrigated and fertilized, and only differed in a non-irrigated fertilized plot. Model results indicated that decomposition rates of fast cycling C (0.1 to 0.2 year−1) increased to nearly offset increases in inputs. With increasing P fertilization, decomposition rates also increased in the slow pool (0.005 to 0.008 year−1). Our findings show sustained, significant (i.e. greater than 4 per mille) increases in C stocks regardless of treatment or inputs. As the majority of fresh inputs remain in the soil for less than 10 years, these long term increases reflect dynamics of the slow pool. Additionally, frequent irrigation was associated with reduced stocks and increased decomposition of fresh plant material. Rates of C gain and decay highlight trade-offs between productivity, nutrient availability, and soil C sequestration as a climate change mitigation strategy.


2021 ◽  
Author(s):  
Yuval Burstyn ◽  
Ron Shaar ◽  
Jonathan Keinan ◽  
Yael Ebert ◽  
Avner Ayalon ◽  
...  

<p>Soil-derived magnetic particles trapped in speleothems can retain valuable information on the physiochemical conditions of the overlying soil and changes in the hydrological system. However, a direct link between magnetic and isotopic properties of speleothems has been only qualitatively established and is known to vary regionally. Here we investigate two Holocene speleothems from Soreq Cave, Israel and provide evidence for strong coupling over centennial to millennial timescales between the inflow of magnetic particles (quantified using the magnetic flux index, IRM<sub>flux</sub>), δ<sup>13</sup>C, and rainfall amounts. The two stalagmites formed at separate intervals: one at ~9.5 ky BP capturing the transition from pluvial Eastern Mediterranean conditions associated with Sapropel 1 (S1) and a second at 5.4 ky BP recording mid-Holocene wet-dry cycles.</p><p>The late-Holocene speleothem shows an anomalously high δ<sup>13</sup>C episode that is correlated with extremely low IRM<sub>flux</sub>, indicating minimal contribution from overlying soils due to either (1) recently denuded soils, or (2) high overland and vadose runoff. By contrast, the mid-Holocene sample shows saw-tooth cycles in both δ<sup>18</sup>O and δ<sup>13</sup>C, which are interpreted as rapid climate fluctuations associated with rainfall changes. IRM<sub>flux</sub> during this period varies in-phase with the δ<sup>13</sup>C cycles; however, the peaks in IRM<sub>flux</sub> values precede those of the isotope values. The apparent lag in isotopic values may be explained by the faster response of the IRM<sub>flux </sub>to increased rainfall resulting from the rapid physical translocation of overlying soil particles via groundwater, compared with slower soil organic matter turnover rates, which may vary on timescales of up to thousands of years.</p><p>The separate palaeohydrological scenarios resolved from the two speleothems demonstrate how magnetic data can act as a powerful paleo-hydrology proxy, even in weakly-magnetized speleothems growing under semi-arid conditions.</p>


2020 ◽  
Author(s):  
Holger Pagel ◽  
Björn Kriesche ◽  
Marie Uksa ◽  
Christian Poll ◽  
Ellen Kandeler ◽  
...  

<p>Trait-based models have improved the understanding and prediction of soil organic matter dynamics in terrestrial ecosystems. Microscopic observations and pore scale models are now increasingly used to quantify and elucidate the effects of soil heterogeneity on microbial processes. Combining both approaches provides a promising way to accurately capture spatial microbial-physicochemical interactions and to predict overall system behavior. The present study aims to quantify controls on carbon (C) turnover in soil due to the mm-scale spatial distribution of microbial decomposer communities in soil. A new spatially explicit trait-based model (SpatC) has been developed that captures the combined dynamics of microbes and soil organic matter (SOM) by taking into account microbial life-history traits and SOM accessibility. Samples of spatial distributions of microbes at µm-scale resolution were generated using a spatial statistical model based on Log Gaussian Cox Processes which was originally used to analyze distributions of bacterial cells in soil thin sections. These µm-scale distribution patterns were then aggregated to derive distributions of microorganisms at mm-scale. We performed Monte-Carlo simulations with microbial distributions that differ in mm-scale spatial heterogeneity and functional community composition (oligotrophs, copiotrophs and copiotrophic cheaters). Our modelling approach revealed that the spatial distribution of soil microorganisms triggers spatiotemporal patterns of C utilization and microbial succession. Only strong spatial clustering of decomposer communities induces a diffusion limitation of the substrate supply on the microhabitat scale, which significantly reduces the total decomposition of C compounds and the overall microbial growth. However, decomposer communities act as functionally redundant microbial guilds with only slight changes in C utilization. The combined statistical and process-based modelling approach derives distribution patterns of microorganisms at the mm-scale from microbial biogeography at microhabitat scale (µm) and quantifies the emergent macroscopic (cm) microbial and C dynamics. Thus, it effectively links observable process dynamics to the spatial control by microbial communities. Our study highlights a powerful approach that can provide further insights into the biological control of soil organic matter turnover.</p>


2020 ◽  
Author(s):  
Sara König ◽  
Ulrich Weller ◽  
Birgit Lang ◽  
Mareike Ließ ◽  
Stefanie Mayer ◽  
...  

<p>The increasing demand for food and bio-energy gives need to optimize soil productivity, while securing other soil functions such as nutrient cycling and buffer capacity, carbon storage, biological activity, and water filter and storage. Mechanistic simulation models are an essential tool to fully understand and predict the complex interactions between physical, biological and chemical processes of soil with those functions, as well as the feedbacks between these functions.</p><p>We developed a systemic soil model to simulate the impact of different management options and changing climate on the named soil functions by integrating them within a simplified system. The model operates on a 1d soil profile consisting of dynamic nodes, which may represent the different soil horizons, and integrates different processes including dynamic water distribution, soil organic matter turnover, crop growth, nitrogen cycling, and root growth.</p><p>We present the main features of our model by simulating crop growth under various climatic scenarios on different soil types including management strategies affecting the soil structure. We show the relevance of soil structure for the main soil functions and discuss different model outcome variables as possible measures for these functions.</p><p>Further, we discuss ongoing model extensions, especially regarding the integration of biological processes, and possible applications.</p>


2020 ◽  
Author(s):  
Xudan Zhu

<p>The use of biochar as a soil amendment has been proposed to increase the carbon (C) sequestration in soils. However, a more rapid soil organic matter turnover after biochar application might reduce the effectiveness of biochar applications for C sequestration. Data on the effects of biochar on soil C turnover is particularly important in boreal forests where large quantities of forest harvest residues would be available as feedstock for biochar production. To better understand the effects of biochar on boreal forest soil, we established a split-plot experiment where two spruce biochar produced with different temperatures (500°C and 650°C) were applied at a rate of 1.0 kg m<sup>-2</sup> and 0.5 kg m<sup>-2</sup> in a young xeric Scots pine forest in southern Finland. Measurement of soil CO<sub>2</sub> effluxes and microbial biomass were used to investigate changes in soil C dynamics. Biochar application increased the rate of soil CO<sub>2</sub> efflux by 10.6% across all biochar treatments and significantly (P<0.05) in 1.0 kg m<sup>-2</sup> treatments. Soil microbial biomass remained unchanged. Soil temperature was 0.1 to 0.5°C higher in the biochar-amended treatments. Further analysis revealed that when soil CO<sub>2</sub> efflux was corrected for the changes in soil temperature and soil moisture, there were no significant differences between treatments. We conclude that increase in soil CO<sub>2</sub> efflux was attributed to warmer soils at the initial stage after biochar application to the soil surface; changes in soil chemical properties did not have any detectable effect on soil respiration.</p>


Sign in / Sign up

Export Citation Format

Share Document