Ecosystem impacts of climate change and ocean acidification: A case for “global” conservation physiology

Author(s):  
Hans O. Pörtner
2016 ◽  
Vol 64 (spe2) ◽  
pp. 117-136 ◽  
Author(s):  
Paulo Antunes Horta ◽  
Pablo Riul ◽  
Gilberto M. Amado Filho ◽  
Carlos Frederico D. Gurgel ◽  
Flávio Berchez ◽  
...  

Abstract Rhodolith beds are important marine benthic ecosystems, representing oases of high biodiversity among sedimentary seabed environments. They are found frequently and abundantly, acting as major carbonate 'factories' and playing a key role in the biogeochemical cycling of carbonates in the South Atlantic. Rhodoliths are under threat due to global change (mainly related to ocean acidification and global warming) and local stressors, such as fishing and coastal run-off. Here, we review different aspects of the biology of these organisms, highlighting the predicted effects of global change, considering the additional impact of local stressors. Ocean acidification (OA) represents a particular threat that can reduce calcification or even promote the decalcification of these bioengineers, thus increasing the eco-physiological imbalance between calcareous and fleshy algae. OA should be considered, but this together with extreme events such as heat waves and storms, as main stressors of these ecosystems at the present time, will worsen in the future, especially if possible interactions with local stressors like coastal pollution are taken into consideration. Thus, in Brazil there is a serious need for starting monitoring programs and promote innovative experimental infrastructure in order to improve our knowledge of these rich environments, optimize management efforts and enhance the needed conservation initiatives.


Author(s):  
Andrew Hacket-Pain ◽  
Michał Bogdziewicz

Climate change is reshaping global vegetation through its impacts on plant mortality, but recruitment creates the next generation of plants and will determine the structure and composition of future communities. Recruitment depends on mean seed production, but also on the interannual variability and among-plant synchrony in seed production, the phenomenon known as mast seeding. Thus, predicting the long-term response of global vegetation dynamics to climate change requires understanding the response of masting to changing climate. Recently, data and methods have become available allowing the first assessments of long-term changes in masting. Reviewing the literature, we evaluate evidence for a fingerprint of climate change on mast seeding and discuss the drivers and impacts of these changes. We divide our discussion into the main characteristics of mast seeding: interannual variation, synchrony, temporal autocorrelation and mast frequency. Data indicate that masting patterns are changing but the direction of that change varies, likely reflecting the diversity of proximate factors underlying masting across taxa. Experiments to understand the proximate mechanisms underlying masting, in combination with the analysis of long-term datasets, will enable us to understand this observed variability in the response of masting. This will allow us to predict future shifts in masting patterns, and consequently ecosystem impacts of climate change via its impacts on masting. This article is part of the theme issue ‘The ecology and evolution of synchronized seed production in plants’.


Author(s):  
Harrison James

Chapter 9 addresses the impacts of climate change and ocean acidification on the marine environment and the extent to which international law has reacted to this emerging threat to the ecological integrity of the oceans. These issues are particularly challenging to regulate because of their wide-ranging causes and effects. This chapter, therefore, takes into account both how the global legal regime relating to climate change, including the United Nations Framework Convention on Climate Change and the Paris Agreement, has taken into account the oceans, as well as how sectoral treaties dealing with specific maritime activities have addressed climate change and ocean acidification within their normative framework. In this latter respect, the chapter focuses on the global regulation of carbon emissions from shipping and the way in which the international community has responded to proposed carbon sequestration activities at sea, including sub-seabed storage and geo-engineering.


2021 ◽  
Author(s):  
Andrew Hacket-Pain ◽  
Michał Bogdziewicz

Climate change is reshaping global vegetation through its impacts on plant mortality, but recruitment creates the next generation of plants and will determine the structure and composition of future communities. Recruitment depends on mean seed production, but also on the interannual variability and among-plant synchrony in seed production, the phenomenon known as mast seeding. Thus, predicting the long-term response of global vegetation dynamics to climate change requires understanding the response of masting to changing climate. Recently, data and methods have become available allowing the first assessments of long-term changes in masting. Reviewing the literature, we evaluate evidence for a fingerprint of climate change on mast seeding and discuss the drivers and impacts of these changes. We divide our discussion into the main characteristics of mast seeding: interannual variation, synchrony, temporal autocorrelation, and mast frequency. Data indicate that masting patterns, are changing, but the direction of that change varies, likely reflecting the diversity of proximate factors underlying masting across taxa. Experiments to understand the proximate mechanisms underlying masting, in combination with the analysis of long-term datasets, will enable us to understand this observed variability in the response of masting. This will allow us to predict future shifts in masting patterns, and consequently ecosystem impacts of climate change via its impacts on masting.


2021 ◽  
Vol 453 ◽  
pp. 109609
Author(s):  
Sieme Bossier ◽  
J. Rasmus Nielsen ◽  
Elin Almroth-Rosell ◽  
Anders Höglund ◽  
Francois Bastardie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document