scholarly journals Supplementation of arginine, ornithine and citrulline in rainbow trout (Oncorhynchus mykiss): Effects on growth, amino acid levels in plasma and gene expression responses in liver tissue

Author(s):  
T.C. Clark ◽  
J. Tinsley ◽  
T. Sigholt ◽  
D.J. Macqueen ◽  
S.A.M. Martin
2001 ◽  
Vol 204 (12) ◽  
pp. 2145-2154 ◽  
Author(s):  
Shelby Louise Steele ◽  
Terry David Chadwick ◽  
Patricia Anne Wright

SUMMARY The present study investigated the role of ammonia as a trigger for hatching, mechanisms of ammonia detoxification and the localization of urea cycle enzymes in the early life stages of freshwater rainbow trout (Oncorhynchus mykiss). The key urea cycle enzyme carbamoyl phosphate synthetase III was found exclusively in the embryonic body (non-hepatic tissues); related enzymes were distributed between the liver and embryonic body. ‘Eyed-up’ trout embryos were exposed either acutely (2h) to 10mmoll−1 NH4Cl or chronically (4 days) to 0.2mmoll−1 NH4Cl. Time to hatching was not affected by either acute or chronic NH4Cl exposure. Urea levels, but not ammonia levels in the embryonic tissues, were significantly higher than in controls after both acute and chronic NH4Cl exposure, whereas there were no significant changes in urea cycle enzyme activities. Total amino acid levels in the embryonic tissues were unaltered by chronic ammonia exposure, but levels of most individual amino acids and total amino acid levels in the yolk were significantly lower (by 34–58%) than in non-exposed controls. The data indicate that trout embryos have an efficient system to prevent ammonia accumulation in embryonic tissue, by conversion of ammonia to urea in embryonic tissues and through elevation of ammonia levels in the yolk.


1995 ◽  
Vol 11 (3-4) ◽  
pp. 309-316 ◽  
Author(s):  
Annette Schuhmacher ◽  
J. Schön ◽  
M. Goldberg ◽  
J. M. Gropp

1991 ◽  
Vol 32 (2) ◽  
pp. 187-198 ◽  
Author(s):  
André Dautigny ◽  
Ellen M. Prager ◽  
Danièle Pham-Dinh ◽  
Jacqueline Jollès ◽  
Farzad Pakdel ◽  
...  

2019 ◽  
Vol 86 ◽  
pp. 764-771 ◽  
Author(s):  
Patrick C. Blaufuss ◽  
T. Gibson Gaylord ◽  
Wendy M. Sealey ◽  
Madison S. Powell

2021 ◽  
Vol 38 (3) ◽  
pp. 269-273
Author(s):  
Mehmet Reşit Taysı ◽  
Muammer Kırıcı ◽  
Mahinur Kırıcı ◽  
Hasan Ulusal ◽  
Bünyamin Söğüt ◽  
...  

The aim of this study was to determine oxidative stress caused by mercury chloride (HgCl2) in rainbow trout (Oncorhynchus mykiss) liver tissue. For this purpose, the LD50 value of HgCl2 on rainbow trout was determined as 551 μg/L. In the study, 40 fish in four groups were exposed to 25% and 50% (138 and 276 µg/L) of the two subletal doses of HgCl2 for 2 and 7 days, with 10 fish (n=10) in each group. To determine oxidative stress; peroxynitrite (ONOO−), total oxidant level (TOS), total antioxidant level (TAS), oxidative stress index (OSI) and malondialdehyde (MDA) were analyzed. In the study, it was observed that the differences between the groups in terms of ONOO−, TOS, TAS and OSI levels in the liver tissues was significant (P<0.05), however, this difference was not significant (P>0.05) in terms of MDA values. As a result, it can be concluded that HgCl2 increases ONOO−, TOS, TAS, OSI and MDA levels in liver tissue and even small doses of mercury are toxic to fish.


Sign in / Sign up

Export Citation Format

Share Document