Developmental effects of the protein kinase inhibitor kenpaullone on the sea urchin embryo

Author(s):  
Letizia Anello ◽  
Vincenzo Cavalieri ◽  
Maria Di Bernardo
1982 ◽  
Vol 92 (3) ◽  
pp. 777-782 ◽  
Author(s):  
K Ishiguro ◽  
H Murofushi ◽  
H Sakai

A fraction obtained from detergent-extract of sea urchin or starfish spermatozoa using DEAE-cellulose chromatography reactivated Triton X-100 models of the spermatozoa in a cAMP-dependent manner. The DEAE fraction contained cAMP-dependent protein kinase with a high level of specific activity. Rabbit muscle inhibitor protein highly specific for cAMP-dependent protein kinases inhibited the ability of the deae fraction to induce reactivation of Triton X-100 models.l This inhibition paralleled inhibition of cAMP-dependent protein kinase activity of the DEAE fraction, suggesting participation of the enzyme in the cAMP-dependent reactivation of Triton X-100 models. However, cAMP-dependent protein kinase further purified from the DEAE fraction was incapable of reactivating these models by itself. A protein factor which was separated from the protein kinase in the course of purification of the enzyme was found to also be necessary for the reactivation. When cAMP-dependent protein kinase was pretreated with protein kinase inhibitor before addition of the protein factor, the reactivation of Triton X-100 models was no longer detected. However, after the protein factor had been incubated with cAMP and cAMP-dependent protein kinase, protein kinase inhibitor did not repress reactivation of Triton X-100 models. We propose that the reactivation needs phosphorylation of the protein factor by cAMP-dependent protein kinase.


Zygote ◽  
2008 ◽  
Vol 16 (1) ◽  
pp. 73-78 ◽  
Author(s):  
M. Alvarez ◽  
J. Nnoli ◽  
E.J. Carroll ◽  
V. Hutchins-Carroll ◽  
Z. Razinia ◽  
...  

SummaryThe 330 kDa fibrillar glycoprotein hyalin is a well known component of the sea urchin embryo extracellular hyaline layer. Only recently, the main component of hyalin, the hyalin repeat domain, has been identified in organisms as widely divergent as bacteria and humans using the GenBank database and therefore its possible function has garnered a great deal of interest. In the sea urchin, hyalin serves as an adhesive substrate in the developing embryo and we have recently shown that exogenously added purified hyalin from Strongylocentrotus purpuratus embryos blocks a model cellular interaction in these embryos, archenteron elongation/attachment to the blastocoel roof. It is important to demonstrate the generality of this result by observing if hyalin from one species of sea urchin blocks archenteron elongation/attachment in another species. Here we show in three repeated experiments, with 30 replicate samples for each condition, that the same concentration of S. purpuratus hyalin (57 μg/ml) that blocked the interaction in living S. purpuratus embryos blocked the same interaction in living Lytechinus pictus embryos. These results correspond with the known crossreactivity of antibody against S. purpuratus hyalin with L. pictus hyalin. We propose that hyalin–hyalin receptor binding may mediate this adhesive interaction. The use of a microplate assay that allows precise quantification of developmental effects should help facilitate identification of the function of hyalin in organisms as divergent as bacteria and humans.


Sign in / Sign up

Export Citation Format

Share Document