sea urchin embryo
Recently Published Documents


TOTAL DOCUMENTS

661
(FIVE YEARS 28)

H-INDEX

59
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Kaichi Watanabe ◽  
Yuhei Yasui ◽  
Yuta Kurose ◽  
Masashi Fujii ◽  
Takashi Yamamoto ◽  
...  

Abstract Gastrulation is a universal process in the morphogenesis of many animal embryos. In sea urchin embryos, it involves the invagination of a single-layered vegetal plate into the blastocoel. Although morphological and molecular events in gastrulation have been well studied, the mechanical driving forces and the regulatory mechanism underlying gastrulation is not fully understood. In this study, structural features and cytoskeletal distributions were studied in sea urchin embryos using an “exogastrulation” model induced by inhibiting the H+/K+ ion pump with omeprazole. The vegetal poles of the exogastrulating embryos showed reduced roundness indices, intracellular pH polarization, and intracellular F-actin polarization at the pre-early gastrulation stage compared with normal embryos. Gastrulation stopped when F-actin polymerization or degradation was inhibited via RhoA or YAP1 knockout, although pH distributions were independent of such a knockout. A mathematical model of sea urchin embryos at the early gastrulation reproduced the shapes of both normal and exogastrulating embryos using cell-dependent cytoskeletal features based on F-actin and pH distributions. Thus, gastrulation required appropriate cell position-dependent intracellular F-actin distributions regulated by the H+/K+ ion pump through pH control.


2021 ◽  
Author(s):  
Kaichi Watanabe ◽  
Yuhei Yasui ◽  
Yuta Kurose ◽  
Masashi Fujii ◽  
Takashi Yamamoto ◽  
...  

Gastrulation is a universal process in the morphogenesis of many animal embryos. In sea urchin embryos, it involves the invagination of single-layered vegetal plate into blastocoel. Although morphological and molecular events have been well studied for gastrulation, the mechanical driving forces and their regulatory mechanism underlying the gastrulation is not fully understood. In this study, structural features and cytoskeletal distributions were studied in sea urchin embryo using an "exogastrulation" model induced by inhibiting the H+/K+ ion pump with omeprazole. The vegetal pole sides of the exogastrulating embryos had reduced roundness indices, intracellular pH polarization, and intracellular F-actin polarization at the pre-early gastrulation compared with the normal embryo. Gastrulation stopped when F-actin polymerization or degradation was inhibited by RhoA or YAP1 knockout, although pH distributions were independent of such a knockout. A mathematical model of sea urchin embryos at the early gastrulation reproduced the shapes of both normal and exogastrulating embryos using cell-dependent cytoskeletal features based on F-actin and pH distributions. Thus, gastrulation required appropriate cell position-dependent intracellular F-actin distributions regulated by the H+/K+ ion pump through pH control.


Development ◽  
2021 ◽  
Author(s):  
Abdull J. Massri ◽  
Laura Greenstreet ◽  
Anton Afanassiev ◽  
Alejandro Berrio ◽  
Gregory A. Wray ◽  
...  

Using scRNA-seq coupled with computational approaches, we studied transcriptional changes in cell states of sea urchin embryos during development to the larval stage. Eighteen closely spaced time points were taken during the first 24 hours of development of Lytechinus variegatus (Lv). Developmental trajectories were constructed using Waddington-OT, a computational approach to "stitch" together developmental timepoints. Skeletogenic and primordial germ cell trajectories diverged early in cleavage. Ectodermal progenitors were distinct from other lineages by sixth cleavage, though a small percentage of ectoderm cells briefly co-expressed endoderm markers indicating an early ecto-endoderm cell state, likely in cells originating from the equatorial region of the egg. Endomesoderm cells originated at 6th cleavage also and this state persisted for more than two cleavages, then diverged into distinct endoderm and mesoderm fates asynchronously, with some cells retaining an intermediate specification status until gastrulation. 79 of 80 genes (99%) examined, and included in published developmental gene regulatory networks (dGRNs), are present in the Lv-scRNA-seq dataset, and expressed in the correct lineages in which the dGRN circuits operate.


2021 ◽  
Author(s):  
Odile Bronchain ◽  
Laetitia Philippe-Caraty ◽  
Vincent Anquetil ◽  
Brigitte Ciapa

Presenilins or PSENs homologues are widely expressed across eukaryotes. Two PSEN are expressed in humans where they play a crucial role in Alzheimer's disease (AD). Each PSEN can be part of the γ-secretase complex that has multiple substrates such as Notch or the amyloid precursor protein (AβPP) which gives the Aβ peptides composing the senile plaques during AD. PSENs also interact with various proteins independently of their γ-secretase activity. They can then be involved in numerous cellular functions, which makes their role in a given cell and/or organism complex to decipher. We settled the sea urchin embryo as a new model to study the role of PSEN. PSEN is present in unduplicated form and highly similar to that of humans. Our results suggest that its expression must be precisely tuned to control the course of the first mitotic cycles and the associated Cai transients, gastrulation execution and, probably in association with ciliated cells, the establishment of the pluteus. We suggest that it would be relevant to study the role of PSEN within the GRN deciphered in the sea urchin.


Development ◽  
2021 ◽  
pp. dev.195859
Author(s):  
Majed Layous ◽  
Lama Khalaily ◽  
Tsvia Gildor ◽  
Smadar Ben-Tabou de-Leon

Deoxygenation, the reduction of oxygen level in the oceans induced by global warming and anthropogenic disturbances, is a major threat to marine life. This change in oxygen level could be especially harmful to marine embryos that utilize endogenous hypoxia and redox gradients as morphogens during normal development. Here we show that the tolerance to hypoxic conditions changes between different developmental stages of the sea urchin embryo, possibly due to the structure of the gene regulatory networks (GRNs). We demonstrate that during normal development, bone morphogenetic protein (BMP) pathway restricts the activity of the vascular endothelial growth factor (VEGF) pathway to two lateral domains and by that controls proper skeletal patterning. Hypoxia applied during early development strongly perturbs the activity of Nodal and BMP pathways that affect VEGF pathway, dorsal-ventral (DV) and skeletogenic patterning. These pathways are largely unaffected by hypoxia applied after DV-axis formation. We propose that the use of redox and hypoxia as morphogens makes the sea urchin embryo highly sensitive to environmental hypoxia during early development, but the GRN structure provides higher tolerance to hypoxia at later stages.


Development ◽  
2021 ◽  
pp. dev.191197
Author(s):  
Hongyan Sun ◽  
ChiehFu Jeff Peng ◽  
Lingyu Wang ◽  
Honglin Feng ◽  
Athula H. Wikramanayake

Activation of Wnt/β-catenin (cWnt) signaling at the future posterior end of early bilaterian embryos is a highly conserved mechanism for establishing the anterior-posterior (AP) axis. Moreover, inhibition of cWnt at the anterior end is required for development of anterior structures in many deuterostome taxa. This phenomenon, which occurs around the time of gastrulation, has been fairly well characterized but the significance of intracellular inhibition of cWnt signaling in cleavage-stage deuterostome embryos for normal AP patterning is less well understood. To investigate this process in an invertebrate deuterostome we defined Axin function in early sea urchin embryos. Axin is ubiquitously expressed at relatively high levels in early embryos and functional analysis revealed that Axin suppresses posterior cell fates in anterior blastomeres by blocking ectopic cWnt activation in these cells. Structure-function analysis of sea urchin Axin demonstrated that only its GSK-3β-binding domain is required for cWnt inhibition. These observations and results in other deuterostomes suggest that Axin plays a critical conserved role in embryonic AP patterning by preventing cWnt activation in multipotent early blastomeres, thus protecting them from assuming ectopic cell fates.


2021 ◽  
Vol 281 ◽  
pp. 111862
Author(s):  
Rosa Bonaventura ◽  
Francesca Zito ◽  
Lorenzo Morroni ◽  
David Pellegrini ◽  
Francesco Regoli ◽  
...  

2021 ◽  
Vol 17 (2) ◽  
pp. e1008780
Author(s):  
Mark R. Winter ◽  
Miri Morgulis ◽  
Tsvia Gildor ◽  
Andrew R. Cohen ◽  
Smadar Ben-Tabou de-Leon

Biomineralization is the process by which organisms use minerals to harden their tissues and provide them with physical support. Biomineralizing cells concentrate the mineral in vesicles that they secret into a dedicated compartment where crystallization occurs. The dynamics of vesicle motion and the molecular mechanisms that control it, are not well understood. Sea urchin larval skeletogenesis provides an excellent platform for investigating the kinetics of mineral-bearing vesicles. Here we used lattice light-sheet microscopy to study the three-dimensional (3D) dynamics of calcium-bearing vesicles in the cells of normal sea urchin embryos and of embryos where skeletogenesis is blocked through the inhibition of Vascular Endothelial Growth Factor Receptor (VEGFR). We developed computational tools for displaying 3D-volumetric movies and for automatically quantifying vesicle dynamics. Our findings imply that calcium vesicles perform an active diffusion motion in both, calcifying (skeletogenic) and non-calcifying (ectodermal) cells of the embryo. The diffusion coefficient and vesicle speed are larger in the mesenchymal skeletogenic cells compared to the epithelial ectodermal cells. These differences are possibly due to the distinct mechanical properties of the two tissues, demonstrated by the enhanced f-actin accumulation and myosinII activity in the ectodermal cells compared to the skeletogenic cells. Vesicle motion is not directed toward the biomineralization compartment, but the vesicles slow down when they approach it, and probably bind for mineral deposition. VEGFR inhibition leads to an increase of vesicle volume but hardly changes vesicle kinetics and doesn’t affect f-actin accumulation and myosinII activity. Thus, calcium vesicles perform an active diffusion motion in the cell of the sea urchin embryo, with diffusion length and speed that inversely correlate with the strength of the actomyosin network. Overall, our studies provide an unprecedented view of calcium vesicle 3D-dynamics and point toward cytoskeleton remodeling as an important effector of the motion of mineral-bearing vesicles.


Sign in / Sign up

Export Citation Format

Share Document