A study of ferric-carbon micro-electrolysis process to enhance nitrogen and phosphorus removal efficiency in subsurface flow constructed wetlands

2019 ◽  
Vol 359 ◽  
pp. 706-712 ◽  
Author(s):  
Youhao Shen ◽  
Linlan Zhuang ◽  
Jian Zhang ◽  
Jinlin Fan ◽  
Ting Yang ◽  
...  
2020 ◽  
Vol 81 (9) ◽  
pp. 2023-2032
Author(s):  
Jingqing Gao ◽  
Lei Yang ◽  
Rui Zhong ◽  
Yong Chen ◽  
Jingshen Zhang ◽  
...  

Abstract The environmental problems related to rural domestic sewage treatment are becoming increasingly serious, and society is also concerned about them. A baffled vertical flow constructed wetland (BVFCW) is a good choice for cleaning wastewater. Herein, a drinking-water treatment sludge-BVFCW (D-BVFCW) parallel with ceramsite-BVFCW (C-BVFCW) planted with Oenanthe javanica (O. javanica) to treat rural domestic sewage was investigated, aiming to compare nitrogen and phosphorus removal efficiency in different BVFCWs. A removal of 23.9% NH4+-N, 24.6% total nitrogen (TN) and 76.7% total phosphorus (TP) occurred simultaneously in the D-BVFCW; 56.4% NH4+-N, 60.8% TN and 55.2% TP respectively in the C-BVFCW. The root and plant height increased by an average of 7.9 cm and 8.3 cm, respectively, in the D-BVFCW, and by 0.7 cm and 1.1 cm, respectively, in the C-BVFCW. These results demonstrate that the D-BVFCW and C-BVFCW have different effects on the removal of N and P. The D-BVFCW mainly removed P, while C-BVFCW mainly removed N.


2015 ◽  
Vol 72 (4) ◽  
pp. 528-534 ◽  
Author(s):  
Yang Bai ◽  
Xie Quan ◽  
Yaobin Zhang ◽  
Shuo Chen

A University of Cape Town process coupled with integrated fixed biofilm and activated sludge system was modified by bypass flow strategy (BUCT–IFAS) to enhance nitrogen and phosphorus removal from the wastewater containing insufficient carbon source. This process was operated under different bypass flow ratios (λ were 0, 0.4, 0.5, 0.6 and 0.7, respectively) to investigate the effect of different operational modes on the nitrogen (N) and phosphorus (P) removal efficiency (λ = 0 was noted as common mode, other λ were noted as bypass flow mode), and optimizing the N and P removal efficiency by altering the λ. Results showed that the best total nitrogen (TN) and total phosphorus (TP) removal performances were achieved at λ of 0.6, the effluent TN and TP averaged 14.0 and 0.4 mg/L meeting discharge standard (TN < 15 mg/L, TP < 0.5 mg/L). Correspondingly, the TN and TP removal efficiencies were 70% and 94%, respectively, which were 24 and 41% higher than those at λ of 0. In addition, the denitrification and anoxic P-uptake rates were increased by 23% and 23%, respectively, compared with those at λ of 0. These results demonstrated that the BUCT–IFAS process was an attractive method for enhancing nitrogen and phosphorus removal from wastewater containing insufficient carbon source.


2019 ◽  
Vol 118 ◽  
pp. 01023 ◽  
Author(s):  
Liwei Xiao ◽  
Hong Jiang ◽  
Chao Shen ◽  
Ke Li ◽  
Lei Hu

In this study, plant growth and nitrogen and phosphorus removal efficiency in lab-scale CWs by five plants (H. vulgaris, N. peltatum, N. tetragona, N. pumilum, S. trifolia) in winter in Sichuan basin was evaluated. H. vulgaris and N. tetragona would well adapt to the winter wetland environment, and the relative growth at the end of the experiment was 89.83% and 66.85%, respectively. In winter, H. vulgaris kept growing with accumulated stems and leaves, while growth of N. tetragona was mainly caused by the growth of roots and stems underwater. In addition, during the winter, removal efficiencies were 66.29%, 57.47%, 54.78%, 55.47%, 41.66% of TN and 62.40%, 69.75%, 69.97%, 65.65%, 76.55% of TP for each planted CWs respectively. The results indicated that the removal of nitrogen and phosphorus from CWs was mainly achieved by substrate, while a small portion was attributed by plant. However, plants like H. vulgaris and N. tetragona, in the CWs in winter can play the role of landscaping. Thus, H. vulgaris could be considered as a suitable and effective nutrient removal plant for treatment of nitrogen and phosphorus water in winter wetlands in Sichuan basin.


Sign in / Sign up

Export Citation Format

Share Document