Surface Reconstruction on Silver Nanoparticles Decorated Trimetallic Hydroxide Nanosheets to Generate Highly Active Oxygen-Deficient (Oxy)hydroxide Layer for High-efficient Water Oxidation

2021 ◽  
pp. 131662
Author(s):  
Xinyu Du ◽  
Junling Guo ◽  
Mingpeng Chen ◽  
Weng-Chon Max Cheong ◽  
Yuyun Chen ◽  
...  
2020 ◽  
Author(s):  
Likun Gao ◽  
Xun Cui ◽  
Zewei Wang ◽  
Christopher Sewell ◽  
Zili Li ◽  
...  

Abstract The ability to develop highly active and low-cost electrocatalysts represents an important endeavor toward accelerating sluggish water-oxidation kinetics. Herein, we report, for the first time, the implementation and unravelling of photothermal effect of spinel nanoparticles (NPs) on promoting dynamic active sites generation to markedly enhance their oxygen evolution reaction (OER) activity via an integrated operando Raman and density functional theory (DFT) study. Specifically, NiFe2O4 (NFO) NPs are first synthesized by capitalizing on amphiphilic star-like diblock copolymers as nanoreactors. Upon the NIR light irradiation, the photothermal heating of the NFO-based electrode progressively raises the temperature, accompanied by a marked decrease of overpotential. Accordingly, only an overpotential of 309 mV is required to yield a high current density of 100 mA cm-2, greatly lower than recently-reported earth-abundant electrocatalysts. More importantly, photothermal effect of NFO NPs not only significantly reduces the activation energy necessitated for water splitting, but also facilitates surface reconstruction into high-active oxyhydroxides at lower potential (1.36 V) under OER conditions, as revealed by operando Raman spectra-electrochemistry. Moreover, the DFT calculation corroborates that these reconstructed (Ni,Fe)oxyhydroxides are electrocatalytically active sites as the kinetics barrier is largely reduced over pure NFO without surface reconstruction. Given the diversity of materials (metal oxides, sulfides, phosphides, etc.) possessing the photo-to-thermal conversion, this effect may thus provide a unique and robust platform to boost highly-active surface species in nanomaterials for fundamental understanding of enhanced performance that may underpin future advances in electrocatalysis, photocatalysis, solar energy conversion and renewable energy production.  


2018 ◽  
Vol 54 (43) ◽  
pp. 5462-5465 ◽  
Author(s):  
Jinxiu Zhao ◽  
Xianghong Li ◽  
Guanwei Cui ◽  
Xuping Sun

An Fe-doped NiCr2O4 nanoparticle film on Ni foam (Fe–NiCr2O4/NF) acts as a durable water oxidation electrocatalyst with superior activity, needing an overpotential of 318 mV to drive 500 mA cm−2 in 1.0 M KOH.


2021 ◽  
Vol 118 (7) ◽  
pp. e2023421118
Author(s):  
Likun Gao ◽  
Xun Cui ◽  
Zewei Wang ◽  
Christopher D. Sewell ◽  
Zili Li ◽  
...  

The ability to develop highly active and low-cost electrocatalysts represents an important endeavor toward accelerating sluggish water-oxidation kinetics. Herein, we report the implementation and unraveling of the photothermal effect of spinel nanoparticles (NPs) on promoting dynamic active-sites generation to markedly enhance their oxygen evolution reaction (OER) activity via an integrated operando Raman and density functional theory (DFT) study. Specifically, NiFe2O4 (NFO) NPs are first synthesized by capitalizing on amphiphilic star-like diblock copolymers as nanoreactors. Upon the near-infrared light irradiation, the photothermal heating of the NFO-based electrode progressively raises the temperature, accompanied by a marked decrease of overpotential. Accordingly, only an overpotential of 309 mV is required to yield a high current density of 100 mA cm−2, greatly lower than recently reported earth-abundant electrocatalysts. More importantly, the photothermal effect of NFO NPs facilitates surface reconstruction into high-active oxyhydroxides at lower potential (1.36 V) under OER conditions, as revealed by operando Raman spectroelectrochemistry. The DFT calculation corroborates that these reconstructed (Ni,Fe)oxyhydroxides are electrocatalytically active sites as the kinetics barrier is largely reduced over pure NFO without surface reconstruction. Given the diversity of materials (metal oxides, sulfides, phosphides, etc.) possessing the photo-to-thermal conversion, this effect may thus provide a unique and robust platform to boost highly active surface species in nanomaterials for a fundamental understanding of enhanced performance that may underpin future advances in electrocatalysis, photocatalysis, solar-energy conversion, and renewable-energy production.


Author(s):  
Shuya Zhao ◽  
Yurui Xue ◽  
Zhongqiang Wang ◽  
Zhiqiang Zheng ◽  
Xiaoyu Luan ◽  
...  

Developing highly active, stable and low-cost electrocatalysts capable of an efficient oxygen evolution reaction (OER) is urgent and challenging.


2020 ◽  
Author(s):  
Yan Duan ◽  
Jun Yan Lee ◽  
Shibo Xi ◽  
Yuanmiao Sun ◽  
Jingjie Ge ◽  
...  

2008 ◽  
Vol 47 (21) ◽  
pp. 3896-3899 ◽  
Author(s):  
Yurii V. Geletii ◽  
Bogdan Botar ◽  
Paul Kögerler ◽  
Daniel A. Hillesheim ◽  
Djamaladdin G. Musaev ◽  
...  

2018 ◽  
Vol 57 (28) ◽  
pp. 8396-8415 ◽  
Author(s):  
Jeongsuk Seo ◽  
Hiroshi Nishiyama ◽  
Taro Yamada ◽  
Kazunari Domen

ChemSusChem ◽  
2014 ◽  
Vol 7 (8) ◽  
pp. 2202-2211 ◽  
Author(s):  
Prashanth W. Menezes ◽  
Arindam Indra ◽  
Patrick Littlewood ◽  
Michael Schwarze ◽  
Caren Göbel ◽  
...  

2021 ◽  
Author(s):  
Natalia Boboriko ◽  
◽  
He Liying ◽  
Yaraslau Dzichenka

Cytochrome P450 17A1 (CYP17A1) is a critically important enzyme in humans that catalyzes the formation of all endogenous androgens. This enzyme is often considered a molecular target for the development of novel high efficient drugs against prostate cancer. In the present work, the random forest algorithm was used to conduct a QSAR study on 370 CYP17A1 ligands with different structures that were collected from the literature and databases, and a QSAR model was created based on the five important descriptors screened out – 2D adjacency and distance matrix descriptors, 2D atom counts and bond counts and 3D surface area, volume and shape descriptors. The model was verified by the test set (accuracy, specificity, sensitivity, F-measure, MCC, and AUC were calculated). It was revealed that the hydrophobic properties of the vdW surface of the ligand have a significant contribution to the activity prediction. The hydrophobic effect of the molecules may be aroused by the presence of the hydrophobic groups or aromatic rings in the molecules. The created QSAR model shows that the molecules with more aromatic rings have better activity. The accuracy of the model on the test set was 84%, precision – 81%, sensitivity – 93%, specificity – 72%, F-measure – 0.87, MCC – 0.67, AUC – 0.88. The model has good robustness and predictive ability and can be used to screen and discover new highly active CYP17A1 inhibitors.


Sign in / Sign up

Export Citation Format

Share Document