diblock copolymers
Recently Published Documents


TOTAL DOCUMENTS

2824
(FIVE YEARS 279)

H-INDEX

104
(FIVE YEARS 10)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 232
Author(s):  
Carmen Moya-Lopez ◽  
Ivan Bravo ◽  
José A. Castro-Osma ◽  
David Chapron ◽  
Patrice Bourson ◽  
...  

Stereo-diblock copolymers of high molecular weight polylactide (PLA) were synthetized by the one pot-sequential addition method assisted by a heteroscorpionate catalyst without the need of a co-initiator. The alkyl zinc organometallic heteroscorpionate derivative (Zn(Et)(κ3-bpzteH)] (bpzteH = 2,2-bis(3,5-dimethylpyrazol-1-yl)-1-para-tolylethoxide) proved to assist in the mechanism of reaction following a coordination-insertion process. Kinetic studies along with the linear correlation between monomer and number average molecular weight (Mn) conversion, and the narrow polydispersities supported the truly living polymerization character of the initiator, whereas matrix-assisted laser desorption/Ionization-time of flight (MALDI-TOF) studies showed a very low order of transesterification. The high stereo-control attained for the afforded high molecular weight derivatives was revealed by homonuclear decoupled 1H NMR spectra and polarimetry measurements. The nanostructure of the PLA derivatives was studied by both wide-angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) and the stereocomplex phase of the PLA stereo-diblock copolymers was successfully identified.


2022 ◽  
pp. 152487
Author(s):  
Xi Zhang ◽  
Panpan Dang ◽  
Bo Deng ◽  
Xiaochao Xia ◽  
Kaiti Wang ◽  
...  

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 62
Author(s):  
Katharina Nieswandt ◽  
Prokopios Georgopanos ◽  
Martin Held ◽  
Evgeni Sperling ◽  
Volker Abetz

Thermoresponsive poly((N,N-dimethyl acrylamide)-co-(N-isopropyl acrylamide)) (P(DMA-co-NIPAM)) copolymers were synthesized via reversible addition−fragmentation chain transfer (RAFT) polymerization. The monomer reactivity ratios were determined by the Kelen–Tüdős method to be rNIPAM = 0.83 and rDMA = 1.10. The thermoresponsive properties of these copo-lymers with varying molecular weights were characterized by visual turbidimetry and dynamic light scattering (DLS). The copolymers showed a lower critical solution temperature (LCST) in water with a dependence on the molar fraction of DMA in the copolymer. Chaotropic and kosmotropic salt anions of the Hofmeister series, known to affect the LCST of thermoresponsive polymers, were used as additives in the aqueous copolymer solutions and their influence on the LCST was demonstrated. Further on, in order to investigate the thermoresponsive behavior of P(DMA-co-NIPAM) in a confined state, P(DMA-co-NIPAM)-b-PS diblock copolymers were prepared via polymerization induced self-assembly (PISA) through surfactant-free RAFT mediated emulsion polymerization of styrene using P(DMA-co-NIPAM) as the macromolecular chain transfer agent (mCTA) of the polymerization. As confirmed by cryogenic transmission electron microscopy (cryoTEM), this approach yielded stabilized spherical micelles in aqueous dispersions where the PS block formed the hydrophobic core and the P(DMA-co-NIPAM) block formed the hydrophilic corona of the spherical micelle. The temperature-dependent behavior of the LCST-type diblock copolymers was further studied by examining the collapse of the P(DMA-co-NIPAM) minor block of the P(DMA-co-NIPAM)-b-PS diblock copolymers as a function of temperature in aqueous solution. The nanospheres were found to be thermosensitive by changing their hydrodynamic radii almost linearly as a function of temperature between 25 °C and 45 °C. The addition of kosmotropic salt anions, as a potentially useful tuning feature of micellar assemblies, was found to increase the hydrodynamic radius of the micelles and resulted in a faster collapse of the micelle corona upon heating.


2021 ◽  
Author(s):  
Christoph Göbel ◽  
Katharina Marquardt ◽  
Dirk Baabe ◽  
Markus Drechsler ◽  
Patrick Loch ◽  
...  

The combination of polymers with nanoparticles offers the possibility to obtain customizable composite materials with additional properties such as sensing or bistability provided by a switchable spin crossover (SCO) core. For all applications, a precise control over size and shape of the nanomaterial is highly important as it will significantly influence its final properties. By confined synthesis of iron(II) SCO coordination polymers within the P4VP cores of polystyrene-block-poly-4-vinylpyridine (PS-b-P4VP) micelles in THF we are able to control the size and also the shape of the resulting SCO nanocomposite particles by the composition of the PS-b-P4VP diblock copolymers (dBCPs) and the amount of complex employed. For the nanocomposite samples with the highest P4VP content, a morphological transition from spherical nanoparticle to worm-like structures was observed with increasing coordination polymer content, which can be explained with the impact of complex coordination on the self-assembly of the dBCP. Furthermore, the SCO nanocomposites showed transition temperatures of T1/2 = 217 K, up to 27 K wide hysteresis loops and a decrease of the residual high-spin fraction down to γHS = 14% in the worm-like structures, as determined by magnetic susceptibility measurements and Mössbauer spectroscopy. Thus, SCO properties close or even better (hysteresis) to those of the bulk material can be obtained and furthermore tuned through size and shape control realized by tailoring the block length ratio of the PS-b-P4VP dBCPs.


Author(s):  
Sophia Pavlenko ◽  
Daniil E Larin ◽  
Elena Nikolaevna Govorun

Abstract Thermoresponsive polymers are usually characterized by a locally amphiphilic chain structure and their self-assembly in solution is controlled, in particular, by the surface activity of the monomer units or side chains. We theoretically study the condensed state of a single diblock copolymer molecule consisting of a hydrophobic block and amphiphilic block with hydrophobic groups in the backbone and pendant polar groups. The equilibrium parameters of the polymer globules of different shapes are determined using the mean-field approach to determine the most favorable structure. Morphological diagrams of condensed macromolecules are presented depending on the chain length, amphiphilic block fraction, interaction parameters, and pendant volume and length. The diagrams are compared with those of a copolymer molecule with the same fraction of amphiphilic monomer units which are regularly distributed along the chain. The diblock copolymer molecule is found to form a single spherical or flattened particle, with the core from the hydrophobic block, or a granular micelle consisting of spherical or nearly spherical particles, in agreement with the experimental data in the literature. The optimal chain parameters for self-assembly into a stable single core-shell particle are predicted.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4424
Author(s):  
Nicolas Audureau ◽  
Fanny Coumes ◽  
Clémence Veith ◽  
Clément Guibert ◽  
Jean-Michel Guigner ◽  
...  

We have previously demonstrated that poly(N-cyanomethylacrylamide) (PCMAm) exhibits a typical upper-critical solution temperature (UCST)-type transition, as long as the molar mass of the polymer is limited, which was made possible through the use of reversible addition-fragmentation chain transfer (RAFT) radical polymerization. In this research article, we use for the first time N-cyanomethylacrylamide (CMAm) in a typical aqueous dispersion polymerization conducted in the presence of poly(N,N-dimethylacrylamide) (PDMAm) macroRAFT agents. After assessing that well-defined PDMAm-b-PCMAm diblock copolymers were formed through this aqueous synthesis pathway, we characterized in depth the colloidal stability, morphology and temperature-responsiveness of the dispersions, notably using cryo-transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and turbidimetry. The combined analyses revealed that stable nanometric spheres, worms and vesicles could be prepared when the PDMAm block was sufficiently long. Concerning the thermoresponsiveness, only diblocks with a PCMAm block of a low degree of polymerization (DPn,PCMAm < 100) exhibited a UCST-type dissolution upon heating at low concentration. In contrast, for higher DPn,PCMAm, the diblock copolymer nano-objects did not disassemble. At sufficiently high temperatures, they rather exhibited a temperature-induced secondary aggregation of primary particles. In summary, we demonstrated that various morphologies of nano-objects could be obtained via a typical polymerization-induced self-assembly (PISA) process using PCMAm as the hydrophobic block. We believe that the development of this aqueous synthesis pathway of novel PCMAm-based thermoresponsive polymers will pave the way towards various applications, notably as thermoresponsive coatings and in the biomedical field.


Sign in / Sign up

Export Citation Format

Share Document