Synergistic combination of 4D printing and conventional metal plating for the fabrication of highly-conductive electrical devices

2021 ◽  
pp. 132513
Author(s):  
Benjamin Qi Yu Chan ◽  
Yi Ting Chong ◽  
Shengqin Wang ◽  
Coryl Jing Jun Lee ◽  
Cally Owh ◽  
...  
Author(s):  
Khodadad Mostakim ◽  
Nahid Imtiaz Masuk ◽  
Md. Rakib Hasan ◽  
Md. Shafikul Islam

The advancement in 3D printing has led to the rapid growth of 4D printing technology. Adding time, as the fourth dimension, this technology ushered the potential of a massive evolution in fields of biomedical technologies, space applications, deployable structures, manufacturing industries, and so forth. This technology performs ingenious design, using smart materials to create advanced forms of the 3-D printed specimen. Improvements in Computer-aided design, additive manufacturing process, and material science engineering have ultimately favored the growth of 4-D printing innovation and revealed an effective method to gather complex 3-D structures. Contrast to all these developments, novel material is still a challenging sector. However, this short review illustrates the basic of 4D printing, summarizes the stimuli responsive materials properties, which have prominent role in the field of 4D technology. In addition, the practical applications are depicted and the potential prospect of this technology is put forward.


2020 ◽  
Vol 19 ◽  
pp. 153303382094805
Author(s):  
Hong Bae Kim ◽  
Jong Hoon Chung

Tissue electrolysis is an alternative modality that uses a low intensity direct electric current passing through at least 2 electrodes within the tissue and resulting electrochemical products including chlorine and hydrogen. These products induce changes in pH around electrodes and cause dehydration resulting from electroosmotic pressure, leading to changes in microenvironment and thus metabolism of the tissues, yielding apoptosis. The procedure requires adequate time for electrochemical reactions to yield products sufficient to induce apoptosis of the tissues. Incorporation of electroporation into electrolysis can decrease the treatment time and enhance the efficiency of electrolytic ablation. Electroporation causes permeabilization in the cell membrane allowing the efflux of potassium ions and extension of the electrochemical area, facilitating the electrolysis process. However, little is known about the combined effects on apoptosis in liver ablation. In this study, we performed an immunohistochemical evaluation of apoptosis for the incorporation of electroporation into electrolysis in liver tissues. To do so, the study was performed with microelectrodes for fixed treatment time while the applied voltage varied to increase the applied total energy for electrolysis. The apoptotic rate for electrolytic ablation increased with enhanced applied energy. The apoptotic rate was 4.31 ± 1.73 times that of control in the synergistic combination compared to 1.49 ± 0.33 times that of the control in electrolytic ablation alone. Additionally, tissue structure was better preserved in synergistic combination ablation compared to electrolysis with an increment of 3.8 mA. Thus, synergistic ablation may accelerate apoptosis and be a promising modality for the treatment of liver tumors.


2021 ◽  
Vol 126 ◽  
pp. 103374
Author(s):  
Saoussen Dimassi ◽  
Frédéric Demoly ◽  
Christophe Cruz ◽  
H. Jerry Qi ◽  
Kyoung-Yun Kim ◽  
...  
Keyword(s):  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Maximilian Jörgens ◽  
Jürgen Königer ◽  
Karl-Georg Kanz ◽  
Torsten Birkholz ◽  
Heiko Hübner ◽  
...  

Abstract Background Mechanical chest compression (mCPR) offers advantages during transport under cardiopulmonary resuscitation. Little is known how devices of different design perform en-route. Aim of the study was to measure performance of mCPR devices of different construction-design during ground-based pre-hospital transport. Methods We tested animax mono (AM), autopulse (AP), corpuls cpr (CC) and LUCAS2 (L2). The route had 6 stages (transport on soft stretcher or gurney involving a stairwell, trips with turntable ladder, rescue basket and ambulance including loading/unloading). Stationary mCPR with the respective device served as control. A four-person team carried an intubated and bag-ventilated mannequin under mCPR to assess device-stability (displacement, pressure point correctness), compliance with 2015 ERC guideline criteria for high-quality chest compressions (frequency, proportion of recommended pressure depth and compression-ventilation ratio) and user satisfaction (by standardized questionnaire). Results All devices performed comparable to stationary use. Displacement rates ranged from 83% (AM) to 11% (L2). Two incorrect pressure points occurred over 15,962 compressions (0.013%). Guideline-compliant pressure depth was > 90% in all devices. Electrically powered devices showed constant frequencies while muscle-powered AM showed more variability (median 100/min, interquartile range 9). Although physical effort of AM use was comparable (median 4.0 vs. 4.5 on visual scale up to 10), participants preferred electrical devices. Conclusion All devices showed good to very good performance although device-stability, guideline compliance and user satisfaction varied by design. Our results underline the importance to check stability and connection to patient under transport.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 442
Author(s):  
Marcin Jaraczewski ◽  
Ryszard Mielnik ◽  
Tomasz Gębarowski ◽  
Maciej Sułowicz

High requirements for power systems, and hence for electrical devices used in industrial processes, make it necessary to ensure adequate power quality. The main parameters of the power system include the rms-values of the current, voltage, and active and reactive power consumed by the loads. In previous articles, the authors investigated the use of low-frequency sampling to measure these parameters of the power system, showing that the method can be easily implemented in simple microcontrollers and PLCs. This article discusses the methods of measuring electrical quantities by devices with low computational efficiency and low sampling frequency up to 1 kHz. It is not obvious that the signal of 50–500 Hz can be processed using the sampling frequency of fs = 47.619 Hz because it defies the Nyquist–Shannon sampling theorem. This theorem states that a reconstruction of a sampled signal is only guaranteed possible for a bandlimit fmax < fs, where fmax is the maximum frequency of a sampled signal. Therefore, theoretically, neither 50 nor 500 Hz can be identified by such a low-frequency sampling. Although, it turns out that if we have a longer period of a stable multi-harmonic signal, which is band-limited (from the bottom and top), it allows us to map this band to the lower frequencies, thus it is possible to use the lower sampling ratio and still get enough precise information of its harmonics and rms value. The use of aliasing for measurement purposes is not often used because it is considered a harmful phenomenon. In our work, it has been used for measurement purposes with good results. The main advantage of this new method is that it achieves a balance between PLC processing power (which is moderate or low) and accuracy in calculating the most important electrical signal indicators such as power, RMS value and sinusoidal-signal distortion factor (e.g., THD). It can be achieved despite an aliasing effect that causes different frequencies to become indistinguishable. The result of the research is a proposal of error reduction in the low-frequency measurement method implemented on compact PLCs. Laboratory tests carried out on a Mitsubishi FX5 compact PLC controller confirmed the correctness of the proposed method of reducing the measurement error.


Sign in / Sign up

Export Citation Format

Share Document