distortion factor
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 23)

H-INDEX

9
(FIVE YEARS 2)

Metrology ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 1-18
Author(s):  
Nikolay V. Kornilov ◽  
Vladimir G. Pronyaev ◽  
Steven M. Grimes

Each experiment provides new information about the value of some physical quantity. However, not only measured values but also the uncertainties assigned to them are an important part of the results. The metrological guides provide recommendations for the presentation of the uncertainties of the measurement results: statistics and systematic components of the uncertainties should be explained, estimated, and presented separately as the results of the measurements. The experimental set-ups, the models of experiments for the derivation of physical values from primary measured quantities, are the product of human activity, making it a rather subjective field. The Systematic Distortion Factor (SDF) may exist in any experiment. It leads to the bias of the measured value from an unknown “true” value. The SDF appears as a real physical effect if it is not removed with additional measurements or analysis. For a set of measured data with the best evaluated true value, their differences beyond their uncertainties can be explained by the presence of Unrecognized Source of Uncertainties (USU) in these data. We can link the presence of USU in the data with the presence of SDF in the results of measurements. The paper demonstrates the existence of SDF in Prompt Fission Neutron Spectra (PFNS) measurements, measurements of fission cross sections, and measurements of Maxwellian spectrum averaged neutron capture cross sections for astrophysical applications. The paper discusses introducing and accounting for the USU in the data evaluation in cases when SDF cannot be eliminated. As an example, the model case of 238U(n,f)/235U(n,f) cross section ratio evaluation is demonstrated.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1229
Author(s):  
Chun-An Cheng ◽  
Hung-Liang Cheng ◽  
Chien-Hsuan Chang ◽  
En-Chih Chang ◽  
Chih-Yang Tsai ◽  
...  

This paper proposes a novel and cost-effective drive circuit for supplying a piezoelectric ceramic actuator, which combines a dual boost AC-DC converter with a coupled inductor and a half-bridge resonant DC-AC inverter into a single-stage architecture with power-factor-correction (PFC) and soft-switching characteristics. The coupled inductor of the dual boost AC-DC converter sub-circuit is designed to work in discontinuous conduction mode (DCM), so the PFC function can be realized in the proposed drive circuit. The resonant tank of the half-bridge resonant inverter sub-circuit is designed as an inductive load, so that the two power switches in the presented drive circuit can achieve zero-voltage switching (ZVS) characteristics. A 50W-rated prototype drive circuit providing a piezoelectric ceramic actuator has been successfully implemented in this paper. From the experimental results at 110V input utility-line voltage, the drive circuit has the characteristics of high power factor and low input current total-harmonic-distortion factor, and two power switches have ZVS characteristics. Therefore, satisfactory outcomes from measured results prove the function of the proposed drive circuit.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1775
Author(s):  
Ruixia Jin ◽  
Yihao Wang ◽  
Yuanyuan Ma ◽  
Tao Li ◽  
Xintao Duan

Fewer contribution feature components in the image high-dimensional steganalysis feature are able to increase the spatio-temporal complexity of detecting the stego images, and even reduce the detection accuracy. In order to maintain or even improve the detection accuracy while effectively reducing the dimension of the DCTR steganalysis feature, this paper proposes a new selection approach for DCTR feature. First, the asymmetric distortion factor and information gain ratio of each feature component are improved to measure the difference between the symmetric cover and stego features, which provides the theoretical basis for selecting the feature components that contribute to a great degree to detecting the stego images. Additionally, the feature components are arranged in descending order rely on the two measurement criteria, which provides the basis for deleting the components. Based on the above, removing feature components that are ranked larger differently according to two criteria. Ultimately, the preserved feature components are used as the final selected feature for training and detection. Comparison experiments with existing classical approaches indicate that this approach can effectively reduce the feature dimension while maintaining or even improving the detection accuracy. At the same time, it can reduce the detection spatio-temporal complexity of the stego images.


Author(s):  
Marah Mariam ◽  
◽  
Hassan Kenjrawy

Recently the use of sensitive electronic devices has increased, and the quality of energy has become an important factor in electrical power systems, where disturbances occurring in the network (harmonics, swell, voltage sag, etc.) affect consumers and lead to technical-economic damages. One of the most prominent solutions to address energy quality problems is the UPQC (Unified Power Quality Conditioner). In this paper, the unified power quality conditioner used to improve the electrical power quality in the distribution networks was discussed, where the Park transformations are used to obtain the required reference signals, and also the use of adaptive hysteresis band to generate the electronic switch pulses in both serial and shunt switches, where the pulse width is determined by dependence on fuzzy logic. The studied system was validated by simulating different distortion cases and comparing the results when using the Sinusoidal Pulse Width Modulation (SPWM) to control the two switches. The results showed improvement in the electrical power quality through the use of an adaptive hysteresis band controller, and that appeared by reducing the total distortion factor (THD%), which resulted in improving the shape of both the voltage and current waveforms.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3665
Author(s):  
Łukasz Michalec ◽  
Michał Jasiński ◽  
Tomasz Sikorski ◽  
Zbigniew Leonowicz ◽  
Łukasz Jasiński ◽  
...  

The paper presents a power-quality analysis in the utility low-voltage network focusing on harmonic currents’ pollution. Usually, to forecast the modern electrical and electronic devices’ contribution to increasing the current total harmonic distortion factor (THDI) and exceeding the regulation limit, analyses based on tests and models of individual devices are conducted. In this article, a composite approach was applied. The performance of harmonic currents produced by sets of devices commonly used in commercial and residential facilities’ nonlinear loads was investigated. The measurements were conducted with the class A PQ analyzer (FLUKE 435) and dedicated to the specialized PC software. The experimental tests show that the harmonic currents produced by multiple types of nonlinear loads tend to reduce the current total harmonic distortion factor (THDI). The changes of harmonic content caused by summation and/or cancellation effects in total current drawn from the grid by nonlinear loads should be a key factor in harmonic currents’ pollution study. Proper forecasting of the level of harmonic currents injected into the utility grid helps to maintain the quality of electricity at an appropriate level and reduce active power losses, which have a direct impact on the price of electricity generation.


Author(s):  
S. Priyadharsini ◽  
T. S. Balaji Damodhar ◽  
C. Kannan ◽  
L. Ganesh Babu

This paper presents the performance of PV-based embedded dual power source of SL quasi Z source inverter. The SL quasi Z source inverter with an embedded PV source and a dual power source (DPS) is injected into the system. The DPS helps the system to operate at an equilibrium state and stabilizes the entire system during PV power fluctuations. The design of the proposed system is carried out in MATLAB/Simulink environment. The control strategy with the PI controller is adopted. ESLQ Z source inverter with voltage boost method is employed with basic SPWM methodology will be suitable for IM drive applications. The system has the merit of a low inrush current that will protect and increase the life of switching devices. Finally, the study and simulation setup is validated by proving their good operating features. The proposed work is trustworthy that minimizes the total distortion factor, start-up inrush current with improved performance. Keywords: Photo voltaic (PV), embedded dual power SL quasi Z source inverter, Induction motor drive (IM), PI controller.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Seyed Yahya Nikouei ◽  
Behzad Mirzaeian Dehkordi ◽  
Mehdi Niroomand

Selective harmonic elimination pulse-width modulation (SHEPWM) is a widely adopted method to eliminate harmonics in multilevel inverters, yet solving harmonic amplitude equations is both time consuming and not accurate. This method is applied here for a 7-level cascaded multilevel inverter (CMLI) with erroneous DC sources. To meet the seven harmonic amplitude equations, two notches are applied with the use of higher switching frequency than nominal. These notches can be placed in six different positions in the voltage wave, and each was assessed in a separate manner. In order to solve the equations, a hybrid algorithm composed of genetic algorithm (GA) and Newton–Raphson (N-R) algorithm is applied to achieve faster convergence and maintain the accuracy of stochastic methods. At each step of the modulation index (M), different positions for the notches are compared based on the distortion factor (DF2%) benchmark, and the position with lowest DF2% is selected to train an artificial neural fuzzy interface system (ANFIS). ANFIS will receive the DC sources’ voltages together with required M and will produce one output; thus, eight ANFISs are applied to produce seven firing angles, and the remaining one is to determine which one of the notches’ positions should be used. Software simulations and experimental results confirm the validity of this proposed method. The proposed method achieves THD 8.45% when M is equal to 0.8 and is capable of effectively eliminating all harmonics up to the 19th order.


Author(s):  
Sergey S. Frolov ◽  
Dmitry A. Shatilov

For modern remote and closed systems of uninterruptible power supply, a operation of forced discharge of accumulator batteries is in demand. It is advisable to carry out the specified process of forced discharge with recuperation into the network. This way of leads: firstly, to a decrease in the mass of charging and discharging devices due to the exclusion of powerful resistive loads from the latter; secondly, to noticeable energy savings for closed autonomous objects. At the same time, for the regenerative current, increased requirements are imposed on its sinusoidality, the distortion coefficient of which is significantly influenced by the relationship between the EMF of the battery and the amplitude of the mains voltage, the discharge current and the maximum current of the coil of the active rectifier. The influence the frequency of the PWM control signal and the frequency of the regeneration current (mains frequency) is also possible. In uninterruptible systems, storage batteries are used with different total EMF and capacity that determines the discharge current. In addition, the mentioned values change during operation, and at forced discharge, various technique can be used that differ in the ratio of the discharge current to the capacity of the battery and the law of its change. Therefore, in the development of a universal system for forced discharge of a battery into a network with pulse-width control of the regenerative current shape, is relevant information on the dependences of the distortion factor of the sinusoidality on the above ratios of the battery voltage and the amplitude of the mains voltage, the discharge current and the maximum current of the coil of the active rectifier coil, as well as from the number of pulses for the regeneration current period. The article presents the results of work on obtaining diagrams of these dependencies. To obtain the latter, the function of the output current of the active rectifier is formed – of the regeneration current, then its spectral function. Using the latter, the current waveform distortions are estimated based on the spectral approach. The results obtained are in demand in the development of program modules for microcontrollers of the pulse-width regulators of the regeneration current, which implement algorithms for the formation of a current curve with acceptable values of the distortion coefficient of the sinusoidality when changing the parameters of the battery, network and discharge current.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 442
Author(s):  
Marcin Jaraczewski ◽  
Ryszard Mielnik ◽  
Tomasz Gębarowski ◽  
Maciej Sułowicz

High requirements for power systems, and hence for electrical devices used in industrial processes, make it necessary to ensure adequate power quality. The main parameters of the power system include the rms-values of the current, voltage, and active and reactive power consumed by the loads. In previous articles, the authors investigated the use of low-frequency sampling to measure these parameters of the power system, showing that the method can be easily implemented in simple microcontrollers and PLCs. This article discusses the methods of measuring electrical quantities by devices with low computational efficiency and low sampling frequency up to 1 kHz. It is not obvious that the signal of 50–500 Hz can be processed using the sampling frequency of fs = 47.619 Hz because it defies the Nyquist–Shannon sampling theorem. This theorem states that a reconstruction of a sampled signal is only guaranteed possible for a bandlimit fmax < fs, where fmax is the maximum frequency of a sampled signal. Therefore, theoretically, neither 50 nor 500 Hz can be identified by such a low-frequency sampling. Although, it turns out that if we have a longer period of a stable multi-harmonic signal, which is band-limited (from the bottom and top), it allows us to map this band to the lower frequencies, thus it is possible to use the lower sampling ratio and still get enough precise information of its harmonics and rms value. The use of aliasing for measurement purposes is not often used because it is considered a harmful phenomenon. In our work, it has been used for measurement purposes with good results. The main advantage of this new method is that it achieves a balance between PLC processing power (which is moderate or low) and accuracy in calculating the most important electrical signal indicators such as power, RMS value and sinusoidal-signal distortion factor (e.g., THD). It can be achieved despite an aliasing effect that causes different frequencies to become indistinguishable. The result of the research is a proposal of error reduction in the low-frequency measurement method implemented on compact PLCs. Laboratory tests carried out on a Mitsubishi FX5 compact PLC controller confirmed the correctness of the proposed method of reducing the measurement error.


Author(s):  
Lucas Silva ◽  
Dalson Figueiredo Filho

Abstract We employ Newcomb–Benford law (NBL) to evaluate the reliability of COVID-19 figures in Brazil. Using official data from February 25 to September 15, we apply a first digit test for a national aggregate dataset of total cases and cumulative deaths. We find strong evidence that Brazilian reports do not conform to the NBL theoretical expectations. These results are robust to different goodness of fit (chi-square, mean absolute deviation and distortion factor) and data sources (John Hopkins University and Our World in Data). Despite the growing appreciation for evidence-based-policymaking, which requires valid and reliable data, we show that the Brazilian epidemiological surveillance system fails to provide trustful data under the NBL assumption on the COVID-19 epidemic.


Sign in / Sign up

Export Citation Format

Share Document