The effect of sulfamethoxazole on nitrogen removal and electricity generation in a tidal flow constructed wetland coupled with a microbial fuel cell system: Microbial response

2021 ◽  
pp. 134070
Author(s):  
Xiang Zhu ◽  
Caofeng Shen ◽  
Jingxian Huang ◽  
Longmian Wang ◽  
Qingqing Pang ◽  
...  
2017 ◽  
Vol 76 (2) ◽  
pp. 471-477 ◽  
Author(s):  
Yae Wang ◽  
Yaqian Zhao ◽  
Lei Xu ◽  
Wenke Wang ◽  
Liam Doherty ◽  
...  

In the last 10 years, the microbial fuel cell (MFC) has been extensively studied worldwide to extract energy from wastewater via electricity generation. More recently, a merged technique of embedding MFC into a constructed wetland (CW) has been developed and appears to be increasingly investigated. The driving force to integrate these two technologies lies in the fact that CWs naturally possess a redox gradient (depending on flow direction and wetland depth), which is required by MFCs as anaerobic anode and aerobic cathode chambers. No doubt, the integration of MFC with a CW will upgrade the CW to allow it to be used for wastewater treatment and, simultaneously, electricity generation, making CWs more sustainable and environmentally friendly. Currently, published work shows that India, China, Ireland, Spain, Germany and Malaysia are involved in the development of this technology although it is in its infant stage and many technical issues are faced on system configuration, operation and maximisation of electricity production. This paper aims to provide an updated review and analysis of the CW-MFC development. Focuses are placed on the experience gained so far from different researchers in the literature and further research directions and proposals are discussed in great detail.


Sign in / Sign up

Export Citation Format

Share Document