scholarly journals A Multiparameter Network Reveals Extensive Divergence between C. elegans bHLH Transcription Factors

Cell ◽  
2009 ◽  
Vol 138 (2) ◽  
pp. 314-327 ◽  
Author(s):  
Christian A. Grove ◽  
Federico De Masi ◽  
M. Inmaculada Barrasa ◽  
Daniel E. Newburger ◽  
Mark J. Alkema ◽  
...  
Biology Open ◽  
2021 ◽  
Author(s):  
Konstantina Filippopoulou ◽  
Carole Couillault ◽  
Vincent Bertrand

Neural bHLH transcription factors play a key role in the early steps of neuronal specification in many animals. We have previously observed that the Achaete-Scute HLH-3, the Olig HLH-16 and their binding partner the E protein HLH-2 activate the terminal differentiation program of a specific class of cholinergic neurons, AIY, in C. elegans. Here we identify a role for a fourth bHLH, the Neurogenin NGN-1, in this process, raising the question of why so many neural bHLHs are required for a single neuronal specification event. Using quantitative imaging we show that the combined action of different bHLHs is needed to activate the correct level of expression of the terminal selector transcription factors TTX-3 and CEH-10 that subsequently initiate and maintain the expression of a large battery of terminal differentiation genes. Surprisingly, the different bHLHs have an antagonistic effect on another target, the proapoptotic BH3-only factor EGL-1, normally not expressed in AIY and otherwise detrimental for its specification. We propose that the use of multiple neural bHLHs allows robust neuronal specification while, at the same time, preventing spurious activation of deleterious genes.


Development ◽  
2021 ◽  
Vol 148 (11) ◽  
Author(s):  
Neda Masoudi ◽  
Eviatar Yemini ◽  
Ralf Schnabel ◽  
Oliver Hobert

ABSTRACT Cells of the same type can be generated by distinct cellular lineages that originate in different parts of the developing embryo (‘lineage convergence’). Several Caenorhabditis elegans neuron classes composed of left/right or radially symmetric class members display such lineage convergence. We show here that the C. elegans Atonal homolog lin-32 is differentially expressed in neuronal lineages that give rise to left/right or radially symmetric class members. Loss of lin-32 results in the selective loss of the expression of pan-neuronal markers and terminal selector-type transcription factors that confer neuron class-specific features. Another basic helix-loop-helix (bHLH) gene, the Achaete-Scute homolog hlh-14, is expressed in a mirror image pattern relative to lin-32 and is required to induce neuronal identity and terminal selector expression on the contralateral side of the animal. These findings demonstrate that distinct lineage histories converge via different bHLH factors at the level of induction of terminal selector identity determinants, which thus serve as integrators of distinct lineage histories. We also describe neuron-to-neuron identity transformations in lin-32 mutants, which we propose to also be the result of misregulation of terminal selector gene expression.


2009 ◽  
Vol 37 (11) ◽  
pp. 3689-3698 ◽  
Author(s):  
John S. Reece-Hoyes ◽  
Bart Deplancke ◽  
M. Inmaculada Barrasa ◽  
Julia Hatzold ◽  
Ryan B. Smit ◽  
...  

2007 ◽  
Vol 47 (supplement) ◽  
pp. S54
Author(s):  
Koji HASEGAWA ◽  
Tatsushi GOTO ◽  
Daisuke KITANO ◽  
Mari KOTOURA ◽  
Fumio TOKUNAGA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document