Chloride concentration in the pore solution of Portland cement paste and Portland cement concrete

2014 ◽  
Vol 63 ◽  
pp. 35-37 ◽  
Author(s):  
Kyle A. Anders ◽  
Bradley P. Bergsma ◽  
Carolyn M. Hansson
2018 ◽  
Vol 196 ◽  
pp. 04018 ◽  
Author(s):  
Grigory Nesvetaev ◽  
Yulia Koryanova ◽  
Tatiana Zhilnikova

A model describing the variation in autogenous shrinkage and drying shrinkage of portland cement concrete, depending on the volume of aggregates and the shrinkage of hardened cement paste, is presented. The equation to calculate shrinkage of concrete as a function of the volume of aggregates and shrinkage of a hardened cement paste was proposed. Formulas are proposed that describe the change in the shrinkage of hardened cement paste as a function of water/cement. The results of studies of the effect of superplasticizers and mineral additives on the autogenous shrinkage and the drying shrinkage of hardened cement paste are presented. Concretes made with superplasticizer and mineral additive may have the potential lower the value of drying shrinkage. The shrinkage value can be lowered from 30% till 70%. Concretes containing superplasticizers and mineral additives can potentially have the autogenous shrinkage reduced to 75%, or increased to 180%.


2008 ◽  
Vol 400-402 ◽  
pp. 121-124
Author(s):  
Zong Hui Zhou ◽  
Ling Chao Lu ◽  
Xing Kai Gao ◽  
Xin Cheng

In this paper, preparation and mechanical properties of Alite-calcium barium sulphoaluminate (Alite-C2.75B1.25A3 ) cement concrete were studied. The results showed the compressive strength of Alite-C2.75B1.25A3 cement concrete was much higher than that of Portland cement concrete, especially the early-age compressive strength. The 24-hour compressive strength of Alite-C2.75B1.25A3 cement concrete could reach 22.81Mpa for w/c=0.45, 17.29Mpa for w/c=0.50 and 17.04Mpa for w/c=0.55 respectively. They were about 50 to 65 percent higher than those of Portland cement concrete. The 7-day compressive strength could reach about 80 to 90 percent of 28-day strength for Alite-C2.75B1.25A3 cement concrete. The 28-day strength could reach 55.85Mpa for w/c=0.45, 48.01Mpa for w/c=0.50 and 44.21Mpa for w/c=0.55 respectively. The results of SEM showed the interfaces between the hardened cement paste and aggregates in Alite-C2.75B1.25A3 cement concrete were more compact than those in Portland cement concrete. Distribution of particulate bulk was more uniformity and a majority of clinker particles was wrapped by hydrated gel in Alite-C2.75B1.25A3 concrete. And, the structure of Alite-C2.75B1.25A3 cement concrete was much more compact than that of Portland cement concrete.


1997 ◽  
Vol 503 ◽  
Author(s):  
B. K. Diefenderfer ◽  
I. L. Al-Qadi ◽  
J. J. Yoho ◽  
S. M. Riad ◽  
A. Loulizi

ABSTRACTPortland cement concrete (PCC) structures deteriorate with age and need to be maintained or replaced. Early detection of deterioration in PCC (e.g., alkali-silica reaction, freeze/thaw damage, or chloride presence) can lead to significant reductions in maintenance costs. However, it is often too late to perform low-cost preventative maintenance by the time deterioration becomes evident. By developing techniques that would enable civil engineers to evaluate PCC structures and detect deterioration at early stages (without causing further damage), optimization of life-cycle costs of the constructed facility and minimization of disturbance to the facility users can be achieved.Nondestructive evaluation (NDE) methods are potentially one of the most useful techniques ever developed for assessing constructed facilities. They are noninvasive and can be performed rapidly. Portland cement concrete can be nondestructively evaluated by electrically characterizing its complex dielectric constant. The real part of the dielectric constant depicts the velocity of electromagnetic waves in PCC. The imaginary part, termed the “loss factor,” describes the conductivity of PCC and the attenuation of electromagnetic waves.Dielectric properties of PCC have been investigated in a laboratory setting using a parallel plate capacitor operating in the frequency range of 0.1 to 40.1MIHz. This capacitor set-up consists of two horizontal-parallel plates with an adjustable separation for insertion of a dielectric specimen (PCC). While useful in research, this approach is not practical for field implementation. A new capacitor probe has been developed which consists of two plates, located within the same horizontal plane, for placement upon the specimen to be tested. Preliminary results show that this technique is feasible and results are promising; further testing and evaluation is currently underway.


Sign in / Sign up

Export Citation Format

Share Document