Thermo-economic analysis of integrated gasification combined cycle (IGCC) power plant with carbon capture

Author(s):  
Hasan Mahmood Sheikh ◽  
Atta Ullah ◽  
Kun Hong ◽  
Muhammad Zaman
Author(s):  
S De ◽  
P K Nag

The effect of supplementary firing on the performance of an integrated gasification combined cycle (IGCC) power plant is studied. The results are presented with respect to a simple ‘unfired’ IGCC power plant with single pressure power generation for both the gas and the steam cycles as reference. The gases are assumed as real with variable specific heats. It is found that the most favourable benefit of supplementary firing can be obtained for a low temperature ratio R T only. For higher R T, only a gain in work output is possible with a reverse effect on the overall efficiency of the plant. The second law analysis reveals that the exergy loss in the heat-recovery steam generator is most significant as the amount of supplementary firing increases. It is also noteworthy that, although the total exergy loss of the plant decreases with higher supplementary firing for a low R T (= 3.0), the reverse is the case for a higher R T (= 6.0).


Author(s):  
Mohammad Mansouri Majoumerd ◽  
Mohsen Assadi ◽  
Peter Breuhaus

Most of the scenarios presented by different actors and organizations in the energy sector predict an increasing power demand in the coming years mainly due to the world’s population growth. Meanwhile, global warming is still one of the planet’s main concerns and carbon capture and sequestration is considered one of the key alternatives to mitigate greenhouse gas emissions. The integrated gasification combined cycle (IGCC) power plant is a coal-derived power production technology which facilitates the pre-combustion capture of CO2 emissions. After the establishment of the baseline configuration of the IGCC plant with CO2 capture (reported in GT2011-45701), a techno-economic evaluation of the whole IGCC system is presented in this paper. Based on publicly available literature, a database was established to evaluate the cost of electricity (COE) for the plant using relevant cost scaling factors for the existing sub-systems, cost index, and financial parameters (such as discount rate and inflation rate). Moreover, an economic comparison has been carried out between the baseline IGCC plant, a natural gas combined cycle (NGCC), and a supercritical pulverized coal (SCPC) plant. The calculation results confirm that an IGCC plant is 180% more expensive than the NGCC. The overall efficiency of the IGCC plant with CO2 capture is 35.7% (LHV basis), the total plant cost (TPC) is 3,786 US$/kW, and the COE is 160 US$/MWh.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hashmi SAM ◽  

The main idea of this research paper is to provide an innovative way of capturing carbon dioxide emissions from a coal powered power plant. This research paper discusses the design and modeling of a carbon capturing membrane which is being used in an IGCC power plant to capture carbon dioxide from its exhaust gases. The modeling and design of the membrane is done using CFD software namely Ansys workbench. The design and modeling is done using two simulations, one describes the design and structure and the second one demonstrates the working mechanism of the membrane. This paper also briefly discusses IGCC which is environmentally benign compared to traditional pulverized coal-fired power plants, and economically feasible compared to the Natural Gas Combine Cycle (NGCC). IGCC power plant is more diverse and offers flexibility in fuel utility. This paper also incorporates a PFD of integrated gasification power plant with the carbon capturing membrane unit integrated in it. Index Terms: Integrated gasification combined cycle power plant, Carbon capture and storage, Gas permeating membrane, CFD based design of gas permeating membrane.


Sign in / Sign up

Export Citation Format

Share Document