Enhanced ablation resistance through laser glazing of plasma sprayed LaTi 2 Al 9 O 19 -based functionally graded thermal barrier coating

2016 ◽  
Vol 42 (8) ◽  
pp. 10184-10190 ◽  
Author(s):  
S.R. Dhineshkumar ◽  
Muthukannan Duraiselvam ◽  
S. Natarajan ◽  
S.S. Panwar ◽  
Trilochan Jana ◽  
...  
2020 ◽  
Vol 103 (10) ◽  
pp. 5599-5611 ◽  
Author(s):  
Xin Zhou ◽  
Wenjia Song ◽  
Jieyan Yuan ◽  
Qingmei Gong ◽  
Hao Zhang ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3865
Author(s):  
Muhammed Anaz Khan ◽  
Annakodi Vivek Anand ◽  
Muthukannan Duraiselvam ◽  
Koppula Srinivas Rao ◽  
Ramachandra Arvind Singh ◽  
...  

In this work, functionally graded lanthanum magnesium hexaluminate (LaMgAl11O19)/yttria-stabilised zirconia (YSZ) thermal barrier coating (FG-TBC), in as-sprayed and laser-glazed conditions, were investigated for their thermal shock resistance and thermal insulation properties. Results were compared with those of a dual-layered coating of LaMgAl11O19 and YSZ (DC-TBC). Thermal shock tests at 1100 °C revealed that the as-sprayed FG-TBC had improved thermal stability, i.e., higher cycle lifetime than the as-sprayed DC-TBC due to its gradient architecture, which minimised stress concentration across its thickness. In contrast, DC-TBC spalled at the interface due to the difference in the coefficient of thermal expansion between the LaMgAl11O19 and YSZ layers. Laser glazing improved cycle lifetimes of both the types of coatings. Microstructural changes, mainly the formation of segmentation cracks in the laser-glazed surfaces, provided strain tolerance during thermal cycles. Infrared rapid heating of the coatings up to 1000 °C showed that the laser-glazed FG-TBC had better thermal insulation capability, as interlamellar pores entrapped gas and constrained heat transfer across its thickness. From the investigation, it is inferred that (i) FG-TBC has better thermal shock resistance and thermal insulation capability than DC-TBC and (ii) laser glazing can significantly enhance the overall thermal performance of the coatings. Laser-glazed FG-TBC provides the best heat management, and has good potential for applications that require effective heat management, such as in gas turbines.


2018 ◽  
Vol 18 (1) ◽  
pp. 182-192 ◽  
Author(s):  
Mohammed J Kadhim ◽  
Mohammed H Hafiz ◽  
Maryam A Ali Bash

The high temperature corrosion behavior of thermal barrier coating (TBC) systemconsisting of IN-738 LC superalloy substrate, air plasma sprayed Ni24.5Cr6Al0.4Y (wt%)bond coat and air plasma sprayed ZrO2-20 wt% ceria-3.6 wt% yttria (CYSZ) ceramic coatwere characterized. The upper surfaces of CYSZ covered with 30 mg/cm2 , mixed 45 wt%Na2SO4-55 wt% V2O5 salt were exposed at different temperatures from 800 to 1000 oC andinteraction times from 1 up to 8 h. The upper surface plan view of the coatings wereidentified for topography, roughness, chemical composition, phases and reaction productsusing scanning electron microscopy, energy dispersive spectroscopy, talysurf, and X-raydiffraction. XRD analyses of the plasma sprayed coatings after hot corrosion confirmed thephase transformation of nontransformable tetragonal (t') into monoclinic phase, presence ofYVO4 and CeVO4 products. Analysis of the hot corrosion CYSZ coating confirmed theformation of high volume fraction of YVO4, with low volume fractions of CeOV4 and CeO2.The formation of these compounds were combined with formation of monoclinic phase (m)from transformation of nontransformable tetragonal phase (t').


Sign in / Sign up

Export Citation Format

Share Document