Solar-driven hydrogen production from steam methane reforming using highly dispersed metallic Ni catalysts supported on layered double hydroxide nanosheets

2021 ◽  
pp. 116839
Author(s):  
Tian Li ◽  
Ling Tan ◽  
Yufei Zhao Conceptulization Administration ◽  
Yu-Fei Song Conceptulization Administration
Author(s):  
zhiliang ou ◽  
zhonghui zhang ◽  
Changlei Qin ◽  
Hongqiang Xia ◽  
tao deng ◽  
...  

Perovskites are good candidates as the catalyst support to enhance the catalytic performance of the Ni catalysts in steam methane reforming for hydrogen production. To obtain the Ni/perovskite catalyst with...


Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 828 ◽  
Author(s):  
Hyunjoung Kim ◽  
Young-Hee Lee ◽  
Hongjin Lee ◽  
Jeong-Cheol Seo ◽  
Kyubock Lee

Ni catalysts are most suitable for a steam methane reforming (SMR) reaction considering the activity and the cost, although coke formation remains the main problem. Here, Ni-based spinel catalysts with various Mg contents were developed through the synthesis of mesoporous Mg-aluminate supports by evaporation-induced self-assembly followed by Ni loading via incipient wetness impregnation. The mesoporous Ni/Mg-aluminate spinel catalysts showed high coke resistance under accelerated reaction conditions (0.0014 gcoke/gcat·h for Ni/Mg30, 0.0050 gcoke/gcat·h for a commercial catalyst). The coke resistance of the developed catalyst showed a clear trend: the higher the Mg content, the lower the coke deposition. The Ni catalysts with the lower Mg content showed a higher surface area and smaller Ni particle size, which originated from the difference of the sintering resistance and the exsolution of Ni particles. Despite these advantageous attributes of Ni catalysts, the coke resistance was higher for the catalysts with the higher Mg content while the catalytic activity was dependent on the reaction conditions. This reveals that the enhanced basicity of the catalyst could be the major parameter for the reduction of coke deposition in the SMR reaction.


Author(s):  
M. Gambini ◽  
M. Vellini

In this paper two options for H2 production by means of fossil fuels are presented, evaluating their performance when integrated with advanced H2/air cycles. The investigation has been developed with reference to two different schemes, representative both of consolidated technology (combined cycle power plants) and of innovative technology (a new advance mixed cycle, named AMC). The two methods, here considered, to produce H2 are: • coal gasification: it permits transformation of a solid fuel into a gaseous one, by means of partial combustion reactions; • steam-methane reforming: it is the simplest and potentially the most economic method for producing hydrogen in the foreseeable future. These hydrogen production plants require material and energy integrations with the power section, and the best connections must be investigated in order to obtain good overall performance. The main results of the performed investigation are quite variable among the different H2 production options here considered: for example the efficiency value is over 34% for power plants coupled with coal decarbonization system, while it is in a range of 45–48% for power plants coupled with natural gas decarbonization. These differences are similar to those attainable by advanced combined cycle power plants fuelled by natural gas (traditional CC) and coal (IGCC). In other words, the decarbonization of different fossil fuels involves the same efficiency penalty related to the use of different fossil fuel in advanced cycle power plants (from CC to IGCC for example). The CO2 specific emissions depend on the fossil fuel type and the overall efficiency: adopting a removal efficiency of 90% in the CO2 absorption systems, the CO2 emission reduction is 87% and 82% in the coal gasification and in the steam-methane reforming respectively.


2019 ◽  
Vol 337 ◽  
pp. 69-75 ◽  
Author(s):  
Xiaobing Zhu ◽  
Xiaoyu Liu ◽  
Hao-Yu Lian ◽  
Jing-Lin Liu ◽  
Xiao-Song Li

2018 ◽  
Vol 192 ◽  
pp. 1041-1057 ◽  
Author(s):  
Kiattikhoon Phuakpunk ◽  
Benjapon Chalermsinsuwan ◽  
Sompong Putivisutisak ◽  
Suttichai Assabumrungrat

Sign in / Sign up

Export Citation Format

Share Document