Research on micro mechanism and influence of hydrate-based methane-carbon dioxide replacement for realizing simultaneous clean energy exploitation and carbon emission reduction

2021 ◽  
pp. 117266
Author(s):  
Chun-Gang Xu ◽  
Ke-Feng Yan ◽  
Jing Cai ◽  
Wei Zhang ◽  
Zhao-Yang Chen ◽  
...  
2021 ◽  
Vol 257 ◽  
pp. 01009
Author(s):  
Xintong Zhang ◽  
Longshan Fu ◽  
Yu Huang

Environmental pollution is mainly caused by carbon emissions, so carbon emission reduction is our top priority now. Carbon-containing greenhouse gas emissions mainly come from the following aspects: (1) fossil fuel combustion; (2) leakage and volatilization in the process of fuel extraction, processing, transportation, and industrial utilization; (3) traditional biomass fuel combustion. The greenhouse effect will cause an increase in temperature, the rise of sea level, and the reduction of biodiversity. Due to little or no carbon emissions, new energy is a current research direction. It mainly includes wind energy, solar energy, hydropower, nuclear energy, and biological energy. Among them, wind power technology is quite mature, and the cost of wind power has become competitive in the market. Solar energy is an inexhaustible, nonpolluting, renewable, and clean energy source, which is gradually entering the stage of large-scale development. Hydropower is clean energy, renewable, pollution-free, and low operating costs. Nuclear energy is characterized by high efficiency and low carbon, coming from the fission energy released by the fission reaction of the fissionable material (nuclear fuel) in the nuclear reactor. Biomass resources can be divided into four categories: forest resources, crop straws, poultry manure, and household garbage, and its biggest feature is its renewability. Besides, carbon capture and carbon storage are other ways to reduce carbon emissions. Carbon capture uses chemical adsorption, physical adsorption, adsorption separation, and membrane separation to capture carbon dioxide. Carbon storage injects supercritical CO2 into a closed geological structure containing oil, gas, water, or non-commercial coal seams through pipeline technology to form long-term or permanent CO2 storage


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1810
Author(s):  
Kaitong Xu ◽  
Haibo Kang ◽  
Wei Wang ◽  
Ping Jiang ◽  
Na Li

At present, the issue of carbon emissions from buildings has become a hot topic, and carbon emission reduction is also becoming a political and economic contest for countries. As a result, the government and researchers have gradually begun to attach great importance to the industrialization of low-carbon and energy-saving buildings. The rise of prefabricated buildings has promoted a major transformation of the construction methods in the construction industry, which is conducive to reducing the consumption of resources and energy, and of great significance in promoting the low-carbon emission reduction of industrial buildings. This article mainly studies the calculation model for carbon emissions of the three-stage life cycle of component production, logistics transportation, and on-site installation in the whole construction process of composite beams for prefabricated buildings. The construction of CG-2 composite beams in Fujian province, China, was taken as the example. Based on the life cycle assessment method, carbon emissions from the actual construction process of composite beams were evaluated, and that generated by the composite beam components during the transportation stage by using diesel, gasoline, and electric energy consumption methods were compared in detail. The results show that (1) the carbon emissions generated by composite beams during the production stage were relatively high, accounting for 80.8% of the total carbon emissions, while during the transport stage and installation stage, they only accounted for 7.6% and 11.6%, respectively; and (2) during the transportation stage with three different energy-consuming trucks, the carbon emissions from diesel fuel trucks were higher, reaching 186.05 kg, followed by gasoline trucks, which generated about 115.68 kg; electric trucks produced the lowest, only 12.24 kg.


Sign in / Sign up

Export Citation Format

Share Document