Relationship between carbon emission reduction and carbon finance—a study on promoting carbon emission reduction through carbon financing

Author(s):  
Shanming Zhang ◽  
Liyan Wang
2019 ◽  
Vol 11 (5) ◽  
pp. 1465 ◽  
Author(s):  
Li Li ◽  
Di Liu ◽  
Jian Hou ◽  
Dandan Xu ◽  
Wenbo Chao

The negative effects of global warming are becoming more and more serious. The fundamental way to prevent global warming is by reducing carbon dioxide emissions. Achieving this has become a key concern for all countries. The logarithmic mean divisia index model was constructed to decompose the total carbon emission increment. Carbon finance effect was divided into green credit effect and carbon trading effect to analyze the impact of carbon finance on carbon emissions. The results showed that the total carbon emission reduction value caused by green credit effect from 2010 to 2016 in the Beijing-Tianjin-Hebei region was 66193.96 million tons, and the added value of carbon emission caused by carbon trading effect was 80266.68 million tons. There are regional differences in the effects of carbon finance on carbon emissions in these regions. It can be concluded that to a certain extent, green credit can reduce carbon emissions, and carbon trading can increase carbon emissions. Using the gradual expansion of carbon finance trading and market mechanism of carbon finance to solve the problem of carbon emission can improve the efficiency of carbon emission reduction.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1810
Author(s):  
Kaitong Xu ◽  
Haibo Kang ◽  
Wei Wang ◽  
Ping Jiang ◽  
Na Li

At present, the issue of carbon emissions from buildings has become a hot topic, and carbon emission reduction is also becoming a political and economic contest for countries. As a result, the government and researchers have gradually begun to attach great importance to the industrialization of low-carbon and energy-saving buildings. The rise of prefabricated buildings has promoted a major transformation of the construction methods in the construction industry, which is conducive to reducing the consumption of resources and energy, and of great significance in promoting the low-carbon emission reduction of industrial buildings. This article mainly studies the calculation model for carbon emissions of the three-stage life cycle of component production, logistics transportation, and on-site installation in the whole construction process of composite beams for prefabricated buildings. The construction of CG-2 composite beams in Fujian province, China, was taken as the example. Based on the life cycle assessment method, carbon emissions from the actual construction process of composite beams were evaluated, and that generated by the composite beam components during the transportation stage by using diesel, gasoline, and electric energy consumption methods were compared in detail. The results show that (1) the carbon emissions generated by composite beams during the production stage were relatively high, accounting for 80.8% of the total carbon emissions, while during the transport stage and installation stage, they only accounted for 7.6% and 11.6%, respectively; and (2) during the transportation stage with three different energy-consuming trucks, the carbon emissions from diesel fuel trucks were higher, reaching 186.05 kg, followed by gasoline trucks, which generated about 115.68 kg; electric trucks produced the lowest, only 12.24 kg.


Sign in / Sign up

Export Citation Format

Share Document