Fractal scaling and simulation of velocity components and turbulent shear stress in open channel flow

2005 ◽  
Vol 24 (4) ◽  
pp. 1031-1045 ◽  
Author(s):  
Ali Naghi Ziaei ◽  
Ali Reza Keshavarzi ◽  
Emdad Homayoun
2019 ◽  
Vol 2019 ◽  
pp. 1-17
Author(s):  
Yang Shi ◽  
Jiahua Wei ◽  
Shaowu Li ◽  
Peng Song ◽  
Bangwen Zhang

A weakly compressible smoothed particle hydrodynamics (WCSPH) method was developed to model open-channel flow over rough bed. An improved boundary treatment is proposed to quantitatively characterize bed roughness based on the ghost boundary particles (GBPs). In this model, the velocities of GBPs are explicitly calculated by using evolutionary polynomial regression with a multiobjective genetic algorithm. The simulation results show that the proposed boundary treatment can well reflect the influence of wall roughness on the vertical flow structure. A fully developed open channel is established, and its flume length, processing time, and turbulent model are discussed. The mixed-length-based subparticle scale (SPS) turbulence model is adopted to simulate uniform flow in open channel, and this model is compared with the Smagorinsky-based one. For the modified WCSPH model, the results show that the calculated vertical velocity and turbulent shear stress distribution are in good agreement with experimental data and fit better than the calculations obtained from the traditional Smagorinsky-based model.


2018 ◽  
Vol 57 (2) ◽  
pp. 167-182 ◽  
Author(s):  
Theofano I. Koutrouveli ◽  
Athanassios A. Dimas ◽  
Nikolaos Th. Fourniotis ◽  
Alexander C. Demetracopoulos

2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Yu Han ◽  
Shu-Qing Yang ◽  
Muttucumaru Sivakumar ◽  
Liu-Chao Qiu ◽  
Jian Chen

Hydraulic engineers often divide a flow region into subregions to simplify calculations. However, the implementation of flow divisibility remains an open issue and has not yet been implemented as a fully developed mathematical tool for modeling complex channel flows independently of experimental verification. This paper addresses whether a three-dimensional flow is physically divisible, meaning that division lines with zero Reynolds shear stress exist. An intensive laboratory investigation was conducted to carefully measure the time-averaged velocity in a rectangular open channel flow using a laser Doppler anemometry system. Two innovative methods are employed to determine the locations of division lines based on the measured velocity profile. The results clearly reveal that lines with zero total shear stress are discernible, indicating that the flow is physically divisible. Moreover, the experimental data were employed to test previously proposed methods of calculating division lines, and the results show that Yang and Lim’s method is the most reasonable predictor.


2008 ◽  
Vol 46 (5) ◽  
pp. 598-609 ◽  
Author(s):  
Saeed Reza Khodashenas ◽  
Kamal El Kadi Abderrezzak ◽  
André Paquier

Sign in / Sign up

Export Citation Format

Share Document