laser doppler anemometry
Recently Published Documents


TOTAL DOCUMENTS

635
(FIVE YEARS 39)

H-INDEX

43
(FIVE YEARS 3)

2021 ◽  
Vol 2119 (1) ◽  
pp. 012110
Author(s):  
M R Gordienko ◽  
I K Kabardin ◽  
V G Meledin ◽  
A K Kabardin ◽  
M Kn Pravdina ◽  
...  

Abstract The aim of the work was to develop a laser Doppler anemometry method for high-speed turbulent aerodynamic flow diagnostic. As a result, this allowed us to measure two projections of the velocity vector in the range of 0.1 - 400 m/s with a relative error not exceeding 0.5%. The measurement area was 0.1x0.1x0.5mm. The positioning device moved the measuring unit in the area of 250 x 250 x 250 mm with an accuracy of 0.1 mm. This method also provides the ability to measure local flow rate fluctuations.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012038
Author(s):  
E Yu Shadrin ◽  
I S Anufriev ◽  
S V Alekseenko

Abstract The flow structure in a model of promising four-vortex furnace is investigated using three-dimensional laser Doppler anemometry method (3D-LDA). Using the “minimum total pressure” criterion, a vortex flow structure was visualized: the core looks like a deformed elliptical cylinder. Results has been compared with early PIV experiments and showed good agreement. The mathematical model for full-scale furnace numerical studies can be verified using these data.


Author(s):  
Randi Franzke ◽  
Simone Sebben ◽  
Emil Willeson

In this paper, a simplified underhood environment is proposed to investigate the air flow distribution in a vehicle-like set-up and provide high quality measurement data that can be used for the validation of Computational Fluid Dynamic methods. The rig can be equipped with two types of front openings representative for electrified vehicles. Furthermore, it is possible to install differently shaped blockages downstream of the fan to imitate large underhood components. The distance between the blockages and the fan can be varied in longitudinal and lateral direction. The measurements are performed with Laser Doppler Anemometry at a fixed distance downstream of the fan. The results show that the lack of an upper grille opening in the configuration for a battery electric vehicle has a notable impact on the flow field in the reference case without any downstream blockage. However, the differences in the flow field between the two front designs become less when a downstream obstruction is present. The longitudinal and lateral position of the blockages have a minor impact on the flow field compared to the shape of the obstacle itself.


2021 ◽  
Vol 5 (4) ◽  
pp. 80
Author(s):  
Jairo Andrés Gutiérrez Suárez ◽  
Alexánder Gómez Mejía ◽  
Carlos Humberto Galeano Urueña

Spray drying is one of many industrial applications that use annular swirling jets. For this particular application, the flow characteristics in the near-field of the jet are fundamental to obtaining high-quality dried products. In this article, an annular swirling jet configuration is numerically studied using three low-cost eddy-resolving turbulence methods: detached-eddy simulation (DES), delayed-DES (DDES) and scale-adaptive simulation (SAS). To focus in industrial applicability, very coarse grids are used. The individual performance of these models is assessed through a comparison with laser-Doppler anemometry (LDA) measurements and large-eddy simulation (LES) data from available studies. Results show that all the three turbulence models are suitable for performing industrial cost-effective simulations, capable of reproducing LES results of mean velocities and first-order turbulence statistics at a fraction of the computational cost. Differences in the results of the evaluated models were minor; however, the simulation with DDES still provided a better reproduction of experimental results, especially in the very-near field of the jet, as it enforced RANS behavior near the inlet walls and a better transition from modeled to resolved scales.


2021 ◽  
Vol 2088 (1) ◽  
pp. 012041
Author(s):  
E Yu Shadrin ◽  
I S Anufriev ◽  
S V Alekseenko

Abstract The three-component Laser Doppler Anemometry method (3D-LDA) was used to study the internal aerodynamics of an experimental model of a promising furnace with a four-vortex scheme for burning coal fuel. Distributions of the averaged velocity and velocity fluctuations are obtained. There are no the pronounced peaks in the spectrum of velocity fluctuations, so we can speak about the stability of the investigated flow. The studied model is characterized by a high level of velocity fluctuations, provided for effective mixing of the pulverized coal mixture in the combustion chamber of the furnace.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012096
Author(s):  
V G Meledin ◽  
S V Dvoinishnikov ◽  
I K Kabardin ◽  
A S Chubov ◽  
G V Bakakin ◽  
...  

Abstract The aim of the work is to develop a laser Doppler anemometry method for diagnosing turbulent aerodynamic flows in the near wall region. This will enable measuring two projections of the velocity vector in the range of 0.001 … 400 m/s with a relative error not exceeding 0.1%. The measurement area is 0.1×0.1x0.5mm. The positioning device allows moving the measuring unit in the area of 250×250x250 mm with an accuracy of 0.1 mm. This method also provides the ability to measure local flow rate fluctuations.


2021 ◽  
Vol 5 ◽  
pp. 148-163
Author(s):  
Seyed Mostafa Fazeli ◽  
Vasudevan Kanjirakkad ◽  
Christopher Long

This paper presents Laser-Doppler Anemometry (LDA) measurements obtained from the Sussex Multiple Cavity test facility. This facility comprises a number of heated disc cavities with a cool bore flow and is intended to emulate the secondary air system flow in an H.P compressor. Measurements were made of the axial and tangential components of velocity over the respective range of Rossby, Rotational and Axial Reynolds numbers, (Ro, <inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mtext>R</mml:mtext><mml:msub><mml:mtext>e</mml:mtext><mml:mi>θ</mml:mi></mml:msub></mml:math></inline-formula> and<inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mrow><mml:mspace width="0.25em"/><mml:mi mathvariant="normal">R</mml:mi></mml:mrow><mml:msub><mml:mtext>e</mml:mtext><mml:mi>z</mml:mi></mml:msub></mml:math></inline-formula>),<inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mrow><mml:mspace width="0.25em"/></mml:mrow><mml:mn>0.32</mml:mn><mml:mo><</mml:mo><mml:mtext>Ro</mml:mtext><mml:mo><</mml:mo><mml:mn>1.28</mml:mn></mml:math></inline-formula>,<inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mrow><mml:mspace width="0.25em"/><mml:mi mathvariant="normal">R</mml:mi></mml:mrow><mml:msub><mml:mtext>e</mml:mtext><mml:mi>θ</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mn>7.1</mml:mn><mml:mo>×</mml:mo><mml:msup><mml:mn>10</mml:mn><mml:mn>5</mml:mn></mml:msup></mml:math></inline-formula>, <inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mn>1.2</mml:mn><mml:mo>×</mml:mo><mml:msup><mml:mn>10</mml:mn><mml:mn>4</mml:mn></mml:msup><mml:mo><</mml:mo><mml:mrow><mml:mspace width="0.25em"/><mml:mi mathvariant="normal">R</mml:mi></mml:mrow><mml:msub><mml:mtext>e</mml:mtext><mml:mi>z</mml:mi></mml:msub><mml:mo><</mml:mo><mml:mn>4.8</mml:mn><mml:mo>×</mml:mo><mml:msup><mml:mn>10</mml:mn><mml:mn>4</mml:mn></mml:msup></mml:math></inline-formula> and for the values of the buoyancy parameter <inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mi>β</mml:mi><mml:mrow><mml:mi mathvariant="normal">Δ</mml:mi></mml:mrow><mml:mtext>T</mml:mtext></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:math></inline-formula> :<inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mrow><mml:mspace width="0.25em"/></mml:mrow><mml:mn>0.50</mml:mn><mml:mo><</mml:mo><mml:mrow><mml:mspace width="0.25em"/><mml:mi>β</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">Δ</mml:mi></mml:mrow><mml:mtext>T</mml:mtext><mml:mo><</mml:mo><mml:mn>0.58</mml:mn></mml:math></inline-formula>. The frequency spectra analysis of the tangential velocity indicates the existence of pairs of vortices inside the cavities. The swirl number, <italic>X<sub>k</sub></italic>, calculated from these measurements show that the cavity fluid approaches solid body rotation near the shroud region. The paper also presents results from Unsteady Reynolds-Averaged Navier-Stokes (URANS) calculations for the test case where Ro = 0.64. The time-averaged LDA data and numerical results show encouraging agreement.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1243
Author(s):  
Jennifer Lehmann ◽  
Michael R. Agel ◽  
Konrad H. Engelhardt ◽  
Shashank R. Pinnapireddy ◽  
Sabine Agel ◽  
...  

Lung cancer is one of the most common causes for a high number of cancer related mortalities worldwide. Therefore, it is important to improve the therapy by finding new targets and developing convenient therapies. One of these novel non-invasive strategies is the combination of pulmonary delivered tetraether liposomes and photodynamic therapy. In this study, liposomal model formulations containing the photosensitiser curcumin were nebulised via two different technologies, vibrating-mesh nebulisation and air-jet nebulisation, and compared with each other. Particle size and ζ-potential of the liposomes were investigated using dynamic light scattering and laser Doppler anemometry, respectively. Furthermore, atomic force microscopy and transmission electron microscopy were used to determine the morphological characteristics. Using a twin glass impinger, suitable aerodynamic properties were observed, with the fine particle fraction of the aerosols being ≤62.7 ± 1.6%. In vitro irradiation experiments on lung carcinoma cells (A549) revealed an excellent cytotoxic response of the nebulised liposomes in which the stabilisation of the lipid bilayer was the determining factor. Internalisation of nebulised curcumin-loaded liposomes was visualised utilising confocal laser scanning microscopy. Based on these results, the pulmonary application of curcumin-loaded tetraether liposomes can be considered as a promising approach for the photodynamic therapy against lung cancer.


2021 ◽  
pp. 146808742110344
Author(s):  
José Galindo ◽  
Andrés Omar Tiseira ◽  
Luis Miguel García-Cuevas ◽  
Nicolás Medina

The current paper presents the validation of some hypotheses used for developing a one-dimensional twin-entry turbine model with experimental measurements. A Laser Doppler Anemometry (LDA) technique has been used for measuring the axial Mach number and for counting the number of particles downstream of the rotor outlet. These measurements have been done for different mass flow ratio (MFR) and reduced turbocharger speed conditions. The flow coming from each turbine entry does not fully mix with the other within the rotor since, downstream of the rotor, they can still be differentiated. Thus, the hypothesis of studying twin-entry turbines as two separated single-entry turbines in one-dimensional models is corroborated. Moreover, the rotor outlet area corresponding to each flow branch has linear trends with the MFR value. Therefore, the rotor outlet effective area used for one-dimensional models should vary linearly with the MFR value.


Author(s):  
Alexandros Makedonas ◽  
Matteo Carpentieri ◽  
Marco Placidi

AbstractWind-tunnel experiments were carried out on four urban morphologies: two tall canopies with uniform height and two super-tall canopies with a large variation in element heights (where the maximum element height is more than double the average canopy height, $$h_{max}=2.5h_{avg}$$ h max = 2.5 h avg ). The average canopy height and packing density are fixed across the surfaces to $$h_{avg} = 80~\hbox {mm}$$ h avg = 80 mm , and $$\lambda _{p} = 0.44$$ λ p = 0.44 , respectively. A combination of laser Doppler anemometry and direct-drag measurements are used to calculate and scale the mean velocity profiles with the boundary-layer depth $$\delta $$ δ . In the uniform-height experiment, the high packing density results in a ‘skimming flow’ regime with very little flow penetration into the canopy. This leads to a surprisingly shallow roughness sublayer (depth $$\approx 1.15h_{avg}$$ ≈ 1.15 h avg ), and a well-defined inertial sublayer above it. In the heterogeneous-height canopies, despite the same packing density and average height, the flow features are significantly different. The height heterogeneity enhances mixing, thus encouraging deep flow penetration into the canopy. A deeper roughness sublayer is found to exist extending up to just above the tallest element height (corresponding to $$z/h_{avg} = 2.85$$ z / h avg = 2.85 ), which is found to be the dominant length scale controlling the flow behaviour. Results point toward the existence of a constant-stress layer for all surfaces considered herein despite the severity of the surface roughness ($$\delta /h_{avg} = 3 - 6.25$$ δ / h avg = 3 - 6.25 ). This contrasts with the previous literature.


Sign in / Sign up

Export Citation Format

Share Document