The chaos and optimal control of cancer model with complete unknown parameters

2009 ◽  
Vol 42 (5) ◽  
pp. 2865-2874 ◽  
Author(s):  
Awad El-Gohary ◽  
I.A. Alwasel
2019 ◽  
Vol 12 (03) ◽  
pp. 1950027 ◽  
Author(s):  
Malihe Najafi ◽  
Hadi Basirzadeh

In this paper, we introduced the optimal control homotopy perturbation method (OCHPM) by using the homotopy perturbation method (HPM). Every one, by using of the proposed method, can obtain numerical solutions of mathematical modeling for cancer-immunotherapy. In this paper, in order to prove the preciseness and efficiency of the OCHPM method, we compared the obtained numerical solutions with HPM. The results obtained showed that the OCHPM method is powerful to generate the numerical solutions for some therapeutic models.


1982 ◽  
Vol 19 (03) ◽  
pp. 532-545 ◽  
Author(s):  
Michael Kolonko

The optimal control of dynamic models which are not completely known to the controller often requires some kind of estimation of the unknown parameters. We present conditions under which a minimum contrast estimator will be strongly consistent independently of the control used. This kind of estimator is appropriate for the adaptive or ‘estimation and control' approach in dynamic programming under uncertainty. We consider a countable-state Markov renewal model and we impose bounding and recurrence conditions of the so-called Liapunov type.


Cybernetics ◽  
1988 ◽  
Vol 24 (2) ◽  
pp. 255-260
Author(s):  
V. B. Kolmanovskii ◽  
L. E. Shaikhet

2002 ◽  
Vol 8 (4-5) ◽  
pp. 389-411 ◽  
Author(s):  
Alex S. Poznyak

This paper develops a version of Robust Stochastic Maximum Principle (RSMP) applied to the Minimax Mayer Problem formulated for stochastic differential equations with the control-dependent diffusion term. The parametric families of first and second order adjoint stochastic processes are introduced to construct the corresponding Hamiltonian formalism. The Hamiltonian function used for the construction of the robust optimal control is shown to be equal to the Lebesque integral over a parametric set of the standard stochastic Hamiltonians corresponding to a fixed value of the uncertain parameter. The paper deals with a cost function given at finite horizon and containing the mathematical expectation of a terminal term. A terminal condition, covered by a vector function, is also considered. The optimal control strategies, adapted for available information, for the wide class of uncertain systems given by an stochastic differential equation with unknown parameters from a given compact set, are constructed. This problem belongs to the class of minimax stochastic optimization problems. The proof is based on the recent results obtained for Minimax Mayer Problem with a finite uncertainty set [14,43-45] as well as on the variation results of [53] derived for Stochastic Maximum Principle for nonlinear stochastic systems under complete information. The corresponding discussion of the obtain results concludes this study.


2022 ◽  
Author(s):  
Nirag Kadakia

Functional forms of biophysically-realistic neuron models are constrained by neurobiological and anatomical considerations, such as cell morphologies and the presence of known ion channels. Despite these constraints, neurons models still contain unknown static parameters which must be inferred from experiment. This inference task is most readily cast into the framework of state-space models, which systematically takes into account partial observability and measurement noise. Inferring only dynamical state variables such as membrane voltages is a well-studied problem, and has been approached with a wide range of techniques beginning with the well-known Kalman filter. Inferring both states and fixed parameters, on the other hand, is less straightforward. Here, we develop a method for joint parameter and state inference that combines traditional state space modeling with chaotic synchronization and optimal control. Our methods are tailored particularly to situations with considerable measurement noise, sparse observability, very nonlinear or chaotic dynamics, and highly uninformed priors. We illustrate our approach both in a canonical chaotic model and in a phenomenological neuron model, showing that many unknown parameters can be uncovered reliably and accurately from short and noisy observed time traces. Our method holds promise for estimation in larger-scale systems, given ongoing improvements in calcium reporters and genetically-encoded voltage indicators.


Sign in / Sign up

Export Citation Format

Share Document