Analysis on limit cycle of fractional-order van der Pol oscillator

2014 ◽  
Vol 67 ◽  
pp. 94-102 ◽  
Author(s):  
Yongjun Shen ◽  
Shaopu Yang ◽  
Chuanyi Sui
Author(s):  
Nguyen Van Khang ◽  
Bui Thi Thuy ◽  
Truong Quoc Chien

This study aims to investigate the harmonic resonance of third-order forced van der Pol oscillator with fractional-order derivative using the asymptotic method. The approximately analytical solution for the system is first determined, and the amplitude–frequency equation of the oscillator is established. The stability condition of the harmonic solution is then obtained by means of Lyapunov theory. A comparison between the traditional integer-order of forced van der Pol oscillator and the considered fractional-order one follows the numerical simulation. Finally, the numerical results are analyzed to show the influences of the parameters in the fractional-order derivative on the steady-state amplitude, the amplitude–frequency curves, and the system stability.


2007 ◽  
Vol 17 (04) ◽  
pp. 1343-1354 ◽  
Author(s):  
R. YAMAPI ◽  
B. R. NANA NBENDJO ◽  
H. G. ENJIEU KADJI

This paper deals with the dynamics and active control of a driven multi-limit-cycle Van der Pol oscillator. The amplitude of the oscillatory states both in the autonomous and nonautonomous case are derived. The interaction between the amplitudes of the external excitation and the limit-cycles are also analyzed. The domain of the admissible values on the amplitude for the external excitation is found. The effects of the control parameter on the behavior of a driven multi-limit-cycle Van der Pol model are analyzed and it appears that with the appropriate selection of the coupling parameter, the quenching of chaotic vibrations takes place.


2013 ◽  
Vol 23 (11) ◽  
pp. 1350177 ◽  
Author(s):  
A. Y. T. LEUNG ◽  
H. X. YANG ◽  
P. ZHU

A generalized Duffing–van der Pol oscillator with nonlinear fractional order damping is introduced and investigated by the residue harmonic homotopy. The cubic displacement involved in fractional operator is used to describe the higher-order viscoelastic behavior of materials and of aerodynamic damping. The residue harmonic balance method is employed to analytically generate higher-order approximations for the steady state responses of an autonomous system. Nonlinear dynamic behaviors of the harmonically forced oscillator are further explored by the harmonic balance method along with the polynomial homotopy continuation technique. A parametric investigation is carried out to analyze the effects of fractional order of damping and the effect of the magnitude of imposed excitation on the system using amplitude-frequency curves. Jump avoidance conditions are addressed. Neimark bifurcations are captured to delineate regions of instability. The existence of even harmonics in the Fourier expansions implies symmetry-breaking bifurcation in certain combinations of system parameters. Numerical simulations are given by comparing with analytical solutions for validation purpose. We find that all Neimark bifurcation points in the response diagram always exist along a straight line.


2011 ◽  
Vol 474-476 ◽  
pp. 83-88
Author(s):  
Xin Gao

The dynamics of fractional-order systems have attracted increasing attention in recent years. In this paper, we study the chaotic behaviors in a fractional-order modified van der Pol oscillator. We find that chaos exists in the fractional-order modified van der Pol oscillator with order less than 3. In addition, the lowest order we find for chaos to exist in such system is 2.4. Finally, a simple, but effective, linear feedback controller is also designed to stabilize the fractional order chaotic van der Pol oscillator.


2006 ◽  
Vol 13 (1) ◽  
pp. 41-75 ◽  
Author(s):  
Young S. Lee ◽  
Alexander F. Vakakis ◽  
Lawrence A. Bergman ◽  
D. Michael McFarland

2021 ◽  
Author(s):  
Alain Brizard ◽  
Samuel Berry

Abstract The asymptotic limit-cycle analysis of mathematical models for oscillating chemical reactions is presented. In this work, after a brief presentation of mathematical preliminaries applied to the biased Van der Pol oscillator, we consider a two-dimensional model of the Chlorine dioxide Iodine Malonic-Acid (CIMA) reactions and the three-dimensional and two-dimensional Oregonator models of the Belousov-Zhabotinsky (BZ) reactions. Explicit analytical expressions are given for the relaxation-oscillation periods of these chemical reactions that are accurate within 5% of their numerical values. In the two-dimensional CIMA and Oregonator models, we also derive critical parameter values leading to canard explosions and implosions in their associated limit cycles.


Sign in / Sign up

Export Citation Format

Share Document