Hopf bifurcations of a ratio-dependent predator–prey model involving two discrete maturation time delays

2014 ◽  
Vol 68 ◽  
pp. 159-168 ◽  
Author(s):  
Esra Karaoglu ◽  
Huseyin Merdan
2013 ◽  
Vol 2013 ◽  
pp. 1-15
Author(s):  
Huitao Zhao ◽  
Yiping Lin ◽  
Yunxian Dai

A ratio-dependent predator-prey model with two time delays is studied. By means of an iteration technique, sufficient conditions are obtained for the global attractiveness of the positive equilibrium. By comparison arguments, the global stability of the semitrivial equilibrium is addressed. By using the theory of functional equation and Hopf bifurcation, the conditions on which positive equilibrium exists and the quality of Hopf bifurcation are given. Using a global Hopf bifurcation result of Wu (1998) for functional differential equations, the global existence of the periodic solutions is obtained. Finally, an example for numerical simulations is also included.


2013 ◽  
Vol 2013 ◽  
pp. 1-17
Author(s):  
Changjin Xu ◽  
Yusen Wu

A ratio-dependent predator-prey model with two delays is investigated. The conditions which ensure the local stability and the existence of Hopf bifurcation at the positive equilibrium of the system are obtained. It shows that the two different time delays have different effects on the dynamical behavior of the system. An example together with its numerical simulations shows the feasibility of the main results. Finally, main conclusions are included.


2019 ◽  
Vol 29 (03) ◽  
pp. 1950036 ◽  
Author(s):  
R. Sivasamy ◽  
M. Sivakumar ◽  
K. Balachandran ◽  
K. Sathiyanathan

This study focuses on the spatial-temporal dynamics of predator–prey model with cross-diffusion where the intake rate of prey is per capita predator according to ratio-dependent functional response and the prey is harvested through nonlinear harvesting strategy. The permanence analysis and local stability analysis of the proposed model without cross-diffusion are analyzed. We derive the conditions for the appearance of diffusion-driven instability and global stability of the considered model. Also the parameter space for Turing region is specified by keeping the cross-diffusion coefficient as one of the crucial parameters. Numerical simulations are given to justify the proposed theoretical results and to show that the cross-diffusion term plays a significant role in the pattern formation.


Sign in / Sign up

Export Citation Format

Share Document