scholarly journals On the Nature of Bifurcation in a Ratio-Dependent Predator-Prey Model with Delays

2013 ◽  
Vol 2013 ◽  
pp. 1-17
Author(s):  
Changjin Xu ◽  
Yusen Wu

A ratio-dependent predator-prey model with two delays is investigated. The conditions which ensure the local stability and the existence of Hopf bifurcation at the positive equilibrium of the system are obtained. It shows that the two different time delays have different effects on the dynamical behavior of the system. An example together with its numerical simulations shows the feasibility of the main results. Finally, main conclusions are included.

2013 ◽  
Vol 2013 ◽  
pp. 1-15
Author(s):  
Huitao Zhao ◽  
Yiping Lin ◽  
Yunxian Dai

A ratio-dependent predator-prey model with two time delays is studied. By means of an iteration technique, sufficient conditions are obtained for the global attractiveness of the positive equilibrium. By comparison arguments, the global stability of the semitrivial equilibrium is addressed. By using the theory of functional equation and Hopf bifurcation, the conditions on which positive equilibrium exists and the quality of Hopf bifurcation are given. Using a global Hopf bifurcation result of Wu (1998) for functional differential equations, the global existence of the periodic solutions is obtained. Finally, an example for numerical simulations is also included.


2012 ◽  
Vol 2012 ◽  
pp. 1-18
Author(s):  
Changjin Xu ◽  
Yusen Wu

A delayed predator-prey model with disease in the prey is investigated. The conditions for the local stability and the existence of Hopf bifurcation at the positive equilibrium of the system are derived. The effect of the two different time delays on the dynamical behavior has been given. Numerical simulations are performed to illustrate the theoretical analysis. Finally, the main conclusions are drawn.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Bo Yang

The spatiotemporal dynamics of a diffusive ratio-dependent Holling-Tanner predator-prey model with Smith growth subject to zero-flux boundary condition are investigated analytically and numerically. The asymptotic stability of the positive equilibrium and the existence of Hopf bifurcation around the positive equilibrium are shown; the conditions of Turing instability are obtained. And with the help of numerical simulations, it is found that the model exhibits complex pattern replication: stripes, spots-stripes mixtures, and spots Turing patterns.


2022 ◽  
Vol 355 ◽  
pp. 03048
Author(s):  
Bochen Han ◽  
Shengming Yang ◽  
Guangping Zeng

In this paper, we consider a predator-prey system with two time delays, which describes a prey–predator model with parental care for predators. The local stability of the positive equilibrium is analysed. By choosing the two time delays as the bifurcation parameter, the existence of Hopf bifurcation is studied. Numerical simulations show the positive equilibrium loses its stability via the Hopf bifurcation when the time delay increases beyond a threshold.


Author(s):  
Changjin Xu ◽  
Maoxin Liao ◽  
Xiaofei He

Stability and Hopf bifurcation analysis for a Lotka-Volterra predator-prey model with two delays In this paper, a two-species Lotka-Volterra predator-prey model with two delays is considered. By analyzing the associated characteristic transcendental equation, the linear stability of the positive equilibrium is investigated and Hopf bifurcation is demonstrated. Some explicit formulae for determining the stability and direction of Hopf bifurcation periodic solutions bifurcating from Hopf bifurcations are obtained by using normal form theory and center manifold theory. Some numerical simulations for supporting the theoretical results are also included.


2014 ◽  
Vol 24 (07) ◽  
pp. 1450093 ◽  
Author(s):  
Yongli Song ◽  
Yahong Peng ◽  
Xingfu Zou

In this paper, we study the persistence, stability and Hopf bifurcation in a ratio-dependent predator–prey model with diffusion and delay. Sufficient conditions independent of diffusion and delay are obtained for the persistence of the system and global stability of the boundary equilibrium. The local stability of the positive constant equilibrium and delay-induced Hopf bifurcation are investigated by analyzing the corresponding characteristic equation. We show that delay can destabilize the positive equilibrium and induce spatially homogeneous and inhomogeneous periodic solutions. By calculating the normal form on the center manifold, the formulae determining the direction and the stability of Hopf bifurcations are explicitly derived. The numerical simulations are carried out to illustrate and extend our theoretical results.


2021 ◽  
Vol 31 (02) ◽  
pp. 2150024
Author(s):  
Yujia Wang ◽  
Dejun Fan ◽  
Junjie Wei

In this paper, a predator–prey model with age structure, Beddington–DeAngelis functional response and time delays is considered. Using a geometric method for studying transcendental equation with two delays, we conduct detailed analysis on the distribution of the roots for the characteristic equation of the model. Then, applying the integrated semigroup theory and the Hopf bifurcation theorem for an abstract Cauchy problem within a nondense domain, we proved the existence of Hopf bifurcation for the model. Stability switches can also occur, as the two time delays pass through a continuous curve in the parameter plane. To illustrate the theoretical results, numerical simulations are presented.


2017 ◽  
Vol 10 (08) ◽  
pp. 1750119 ◽  
Author(s):  
Wensheng Yang

The dynamical behaviors of a diffusive predator–prey model with Beddington–DeAngelis functional response and disease in the prey is considered in this work. By applying the comparison principle, linearized method, Lyapunov function and iterative method, we are able to achieve sufficient conditions of the permanence, the local stability and global stability of the boundary equilibria and the positive equilibrium, respectively. Our result complements and supplements some known ones.


Sign in / Sign up

Export Citation Format

Share Document