Complex dynamics of a discrete-time predator-prey system with Holling IV functional response

2016 ◽  
Vol 87 ◽  
pp. 158-171 ◽  
Author(s):  
Qianqian Cui ◽  
Qiang Zhang ◽  
Zhipeng Qiu ◽  
Zengyun Hu
2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Hunki Baek

The dynamics of a discrete-time predator-prey system with Ivlev functional response is investigated in this paper. The conditions of existence for flip bifurcation and Hopf bifurcation in the interior of R+2 are derived by using the center manifold theorem and bifurcation theory. Numerical simulations are presented not only to substantiate our theoretical results but also to illustrate the complex dynamical behaviors of the system such as attracting invariant circles, periodic-doubling bifurcation leading to chaos, and periodic-halving phenomena. In addition, the maximum Lyapunov exponents are numerically calculated to confirm the dynamical complexity of the system. Finally, we compare the system to discrete systems with Holling-type functional response with respect to dynamical behaviors.


2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
Huayong Zhang ◽  
Shengnan Ma ◽  
Tousheng Huang ◽  
Xuebing Cong ◽  
Zichun Gao ◽  
...  

We present in this paper an investigation on a discrete predator-prey system with Crowley-Martin type functional response to know its complex dynamics on the routes to chaos which are induced by bifurcations. Via application of the center manifold theorem and bifurcation theorems, occurrence conditions for flip bifurcation and Neimark-Sacker bifurcation are determined, respectively. Numerical simulations are performed, on the one hand, verifying the theoretical results and, on the other hand, revealing new interesting dynamical behaviors of the discrete predator-prey system, including period-doubling cascades, period-2, period-3, period-4, period-5, period-6, period-7, period-8, period-9, period-11, period-13, period-15, period-16, period-20, period-22, period-24, period-30, and period-34 orbits, invariant cycles, chaotic attractors, sub-flip bifurcation, sub-(inverse) Neimark-Sacker bifurcation, chaotic interior crisis, chaotic band, sudden disappearance of chaotic dynamics and abrupt emergence of chaos, and intermittent periodic behaviors. Moreover, three-dimensional bifurcation diagrams are utilized to study the transition between flip bifurcation and Neimark-Sacker bifurcation, and a critical case between the two bifurcations is found. This critical bifurcation case is a combination of flip bifurcation and Neimark-Sacker bifurcation, showing the nonlinear characteristics of both bifurcations.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
S. M. Sohel Rana ◽  
Umme Kulsum

The dynamic behavior of a discrete-time predator-prey system of Leslie type with simplified Holling type IV functional response is examined. We algebraically show that the system undergoes a bifurcation (flip or Neimark-Sacker) in the interior of R+2. Numerical simulations are presented not only to validate analytical results but also to show chaotic behaviors which include bifurcations, phase portraits, period 2, 4, 6, 8, 10, and 20 orbits, invariant closed cycle, and attracting chaotic sets. Furthermore, we compute numerically maximum Lyapunov exponents and fractal dimension to justify the chaotic behaviors of the system. Finally, a strategy of feedback control is applied to stabilize chaos existing in the system.


2017 ◽  
Vol 10 (03) ◽  
pp. 1750047 ◽  
Author(s):  
Nilesh Kumar Thakur ◽  
Rashi Gupta ◽  
Ranjit Kumar Upadhyay

An attempt has been made to understand the complex dynamics of a spatial predator–prey system with Beddington–DeAngelis type functional response in the presence of prey-taxis and subjected to homogenous Neumann boundary condition. To describe the active movement of predators to the regions of high prey density or if the predator is following some sort of odor to find the prey, the prey-taxis phenomenon is included in a general reaction–diffusion equation. We have studied the linear stability analysis of both spatial and non-spatial models. We have performed extensive simulations to identify the conditions to generate spatiotemporal patterns in the presence of prey-taxis. It has been observed that the increasing predator active movement from the bifurcation value, the system shows chaotic behavior whereas increasing value of random movement brings the system back to order from the disordered state.


Sign in / Sign up

Export Citation Format

Share Document