Mathematical analysis and numerical simulation of patterns in fractional and classical reaction-diffusion systems

2016 ◽  
Vol 93 ◽  
pp. 89-98 ◽  
Author(s):  
Kolade M. Owolabi
2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Guido Schneider ◽  
Matthias Winter

<p style='text-indent:20px;'>We consider reaction-diffusion systems for which the trivial solution simultaneously becomes unstable via a short-wave Turing and a long-wave Hopf instability. The Brusseletor, Gierer-Meinhardt system and Schnakenberg model are prototype biological pattern forming systems which show this kind of behavior for certain parameter regimes. In this paper we prove the validity of the amplitude system associated to this kind of instability. Our analytical approach is based on the use of mode filters and normal form transformations. The amplitude system allows us an efficient numerical simulation of the original multiple scaling problems close to the instability.</p>


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Luciano Marcon ◽  
Xavier Diego ◽  
James Sharpe ◽  
Patrick Müller

The Turing reaction-diffusion model explains how identical cells can self-organize to form spatial patterns. It has been suggested that extracellular signaling molecules with different diffusion coefficients underlie this model, but the contribution of cell-autonomous signaling components is largely unknown. We developed an automated mathematical analysis to derive a catalog of realistic Turing networks. This analysis reveals that in the presence of cell-autonomous factors, networks can form a pattern with equally diffusing signals and even for any combination of diffusion coefficients. We provide a software (available at http://www.RDNets.com) to explore these networks and to constrain topologies with qualitative and quantitative experimental data. We use the software to examine the self-organizing networks that control embryonic axis specification and digit patterning. Finally, we demonstrate how existing synthetic circuits can be extended with additional feedbacks to form Turing reaction-diffusion systems. Our study offers a new theoretical framework to understand multicellular pattern formation and enables the wide-spread use of mathematical biology to engineer synthetic patterning systems.


Sign in / Sign up

Export Citation Format

Share Document