Oxygen and hydrogen isotopic composition of phlogopites and amphiboles in diamond-bearing kimberlite hosted MARID xenoliths: Constraints on fluid-rock interaction and recycled crustal material in the deep continental lithospheric mantle

2018 ◽  
Vol 479 ◽  
pp. 272-285 ◽  
Author(s):  
Sandeep Banerjee ◽  
T. Kurtis Kyser ◽  
Roger H. Mitchell
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing-Yao Xu ◽  
Andrea Giuliani ◽  
Qiu-Li Li ◽  
Kai Lu ◽  
Joan Carles Melgarejo ◽  
...  

AbstractOxygen isotope ratios in mantle-derived magmas that differ from typical mantle values are generally attributed to crustal contamination, deeply subducted crustal material in the mantle source or primordial heterogeneities. Here we provide an alternative view for the origin of light oxygen-isotope signatures in mantle-derived magmas using kimberlites, carbonate-rich magmas that assimilate mantle debris during ascent. Olivine grains in kimberlites are commonly zoned between a mantle-derived core and a magmatic rim, thus constraining the compositions of both mantle wall-rocks and melt phase. Secondary ion mass spectrometry (SIMS) analyses of olivine in worldwide kimberlites show a remarkable correlation between mean oxygen-isotope compositions of cores and rims from mantle-like 18O/16O to lower ‘crustal’ values. This observation indicates that kimberlites entraining low-18O/16O olivine xenocrysts are modified by assimilation of low-18O/16O sub-continental lithospheric mantle material. Interaction with geochemically-enriched domains of the sub-continental lithospheric mantle can therefore be an important source of apparently ‘crustal’ signatures in mantle-derived magmas.


2021 ◽  
Author(s):  
Aleksei Kruk ◽  
Alexander Sokol

<p>We study the reaction of garnet lherzolite with carbonatitic melt rich in molecular CO<sub>2</sub> and/or H<sub>2</sub>O in experiments at 5.5 GPa and 1200-1450°C. The experimental results show that carbonation of olivine with formation of orthopyroxene and magnesite can buffer the CO<sub>2</sub> contents in the melt, which impedes immediate separation of CO<sub>2</sub> fluid from melt equilibrated with the peridotite source. The solubility of molecular CO<sub>2</sub> in melt decreases from 20-25 wt.% at 4.5-6.8 wt.% SiO<sub>2</sub> typical of carbonatite to 7-12 wt.% in more silicic kimberlite-like melts with 26-32 wt.% SiO<sub>2</sub>. Interaction of garnet lherzolite with carbonatitic melt (2:1) in the presence of 2-3 wt.% H<sub>2</sub>O and 9-13 wt.% molecular CO<sub>2</sub> at 1200-1450°С yields low SiO<sub>2</sub> (<10 wt.%) alkali‐carbonatite melts, which shows multiphase saturation with magnesite-bearing garnet harzburgite. Thus, carbonatitic melts rich in volatiles can originate in a harzburgite source at moderate temperatures common to continental lithospheric mantle (CLM).</p><p>Having separated from the source, carbonatitic magma enriched in molecular CO<sub>2</sub> and H<sub>2</sub>O can rapidly acquire a kimberlitic composition with >25 wt.% SiO<sub>2 </sub>by dissolution and carbonation of entrapped peridotite. Furthermore, interaction of garnet lherzolite with carbonatitic melt rich in K, CO<sub>2</sub>, and H<sub>2</sub>O at 1350°С produces immiscible kimberlite-like carbonate-silicate and K-rich silicate melts. Quenched silicate melt develops lamelli of foam-like vesicular glass. Differentiation of immiscible melts early during ascent may equalize the compositions of kimberlite magmas generated in different CLM sources. The fluid phase can release explosively from ascending magma at lower pressures as a result of SiO<sub>2</sub> increase which reduces the solubility of CO<sub>2</sub> due to decarbonation reaction of magnesite and orthopyroxene.</p><p>The research was performed by a grant of the Russian Science Foundation (19-77-10023).</p>


2016 ◽  
Vol 13 (19) ◽  
pp. 5527-5539 ◽  
Author(s):  
Sandra Mariam Heinzelmann ◽  
Nicole Jane Bale ◽  
Laura Villanueva ◽  
Danielle Sinke-Schoen ◽  
Catharina Johanna Maria Philippart ◽  
...  

Abstract. Culture studies of microorganisms have shown that the hydrogen isotopic composition of fatty acids depends on their metabolism, but there are only few environmental studies available to confirm this observation. Here we studied the seasonal variability of the deuterium-to-hydrogen (D / H) ratio of fatty acids in the coastal Dutch North Sea and compared this with the diversity of the phyto- and bacterioplankton. Over the year, the stable hydrogen isotopic fractionation factor ε between fatty acids and water (εlipid/water) ranged between −172 and −237 ‰, the algal-derived polyunsaturated fatty acid nC20:5 generally being the most D-depleted (−177 to −235 ‰) and nC18:0 the least D-depleted fatty acid (−172 to −210 ‰). The in general highly D-depleted nC20:5 is in agreement with culture studies, which indicates that photoautotrophic microorganisms produce fatty acids which are significantly depleted in D relative to water. The εlipid/water of all fatty acids showed a transient shift towards increased fractionation during the spring phytoplankton bloom, indicated by increasing chlorophyll a concentrations and relative abundance of the nC20:5 polyunsaturated fatty acids, suggesting increased contributions of photoautotrophy. Time periods with decreased fractionation (less negative εlipid/water values) can potentially be explained by an increased contribution of heterotrophy to the fatty acid pool. Our results show that the hydrogen isotopic composition of fatty acids is a promising tool to assess the community metabolism of coastal plankton potentially in combination with the isotopic analysis of more specific biomarker lipids.


2013 ◽  
Vol 106 ◽  
pp. 111-133 ◽  
Author(s):  
L. Bonal ◽  
C.M.O’D. Alexander ◽  
G.R. Huss ◽  
K. Nagashima ◽  
E. Quirico ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document