Particle size distributions and health risks of polychlorinated dibenzo-p-dioxin/furans, polychlorinated biphenyls, and polychlorinated naphthalenes in atmospheric particles around two secondary copper smelters in Shandong Province, China

Chemosphere ◽  
2020 ◽  
pp. 128742
Author(s):  
Xinrui Yang ◽  
Jing Wu ◽  
Meihong Li ◽  
Min Qi ◽  
Ran Wang ◽  
...  
2016 ◽  
Vol 212 ◽  
pp. 128-134 ◽  
Author(s):  
Qingqing Zhu ◽  
Xian Zhang ◽  
Shujun Dong ◽  
Lirong Gao ◽  
Guorui Liu ◽  
...  

2011 ◽  
Vol 28 (8) ◽  
pp. 1019-1027 ◽  
Author(s):  
J. G. DeVore

Abstract This paper describes an improvement in the diffraction approximation used to retrieve the size distribution of atmospheric particles from solar aureole radiance measurements. Normalization using total optical thickness based on measurement of the solar disk radiance is replaced with one based on the aureole profile radiance itself. Retrievals involving model calculations for power-law distributions of water droplets show significant improvement using the new algorithm. Tests involving two empirical particle size distributions, one for cirrus and another for aerosols, also show improvement using the new normalization algorithm. Comparisons of the diffraction approximation algorithms with a numerical inversion algorithm found that the accuracy of the latter was higher for two different bimodal aerosol distributions. The role envisioned for the diffraction approximation is in estimating the size distribution of large particles in clouds and especially cirrus.


1999 ◽  
Author(s):  
K.K. Ellis ◽  
R. Buchan ◽  
M. Hoover ◽  
J. Martyny ◽  
B. Bucher-Bartleson ◽  
...  

2010 ◽  
Vol 126 (10/11) ◽  
pp. 577-582 ◽  
Author(s):  
Katsuhiko FURUKAWA ◽  
Yuichi OHIRA ◽  
Eiji OBATA ◽  
Yutaka YOSHIDA

1996 ◽  
Vol 61 (4) ◽  
pp. 536-563
Author(s):  
Vladimír Kudrna ◽  
Pavel Hasal

To the description of changes of solid particle size in population, the application was proposed of stochastic differential equations and diffusion equations adequate to them making it possible to express the development of these populations in time. Particular relations were derived for some particle size distributions in flow and batch equipments. It was shown that it is expedient to complement the population balances often used for the description of granular systems by a "diffusion" term making it possible to express the effects of random influences in the growth process and/or particle diminution.


Sign in / Sign up

Export Citation Format

Share Document