granular systems
Recently Published Documents


TOTAL DOCUMENTS

392
(FIVE YEARS 65)

H-INDEX

33
(FIVE YEARS 3)

Author(s):  
I.B. Sangulova ◽  
◽  
V.P. Selyaev ◽  
E.I. Kuldeev ◽  
R.E. Nurlybaev ◽  
...  

The article discusses experimental studies of the size and shape of structured particles of microsilica small angle x-ray scattering method and a photophonon theoretical description of the heat transfer process in complex heterogeneous structures to assessment of the structural characteristics of granular systems for the properties of thermal insulating materials. The mechanism of heat transfer in granular, porous systems is quite complex, since heat exchange occurs in a material consisting of two phases (solid and gas) and at the phase boundary. Heat transfer in liquid thermal insulation coatings can be carried out from one solid particle to another. In this case, the thermal conductivity will depend on: the chemical and elemental composition of the material; particle granulometry; surface topology - the presence of inhomogeneities, defects on the surface; the number of touches and the contact area between the particles. The heat transfer of gas in the pores is carried out when gas molecules collide. Thermal conductivity will be determined by the ratio of the free path of molecules and linear pore sizes, temperature and dynamic viscosity of the gas phase, the nature of the interaction of gas molecules with the solid phase. Heat transfer by radiation depends on the nature of the particles, the dielectric, magnetic permeability and the degree of blackness of the particle surface. Based on the analysis of possible mechanisms of heat transfer in granular systems, it can be argued that the effective thermal conductivity of the system depends, all other things being equal, on the structure of the pore space of granular materials, topology and the number of particle touches. Considering idealized models of the structure of granular materials in the form of ordered folds of perfectly smooth balls, we can obtain several variants of structures: with tetrahedral; hexagonal; cubic packing of balls.


2021 ◽  
pp. 101590
Author(s):  
Ghassan Shahin ◽  
Eric B. Herbold ◽  
Stephen A. Hall ◽  
Ryan C. Hurley

Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1338
Author(s):  
Stéphane Avner

The strange behavior of subatomic particles is described by quantum theory, whose standard interpretation rejected some fundamental principles of classical physics such as causality, objectivity, locality, realism and determinism. Recently, a granular relativistic electrodynamical model of the electron could capture the measured values of its observables and predict its mass from the stability of its substructure. The model involves numerous subparticles that constitute some tight nucleus and loosely bound envelope allegedly forming real waves. The present study examines whether such a substructure and associated dynamics allow fundamentally realist interpretations of emblematic quantum phenomena, properties and principles, such as wave-particle duality, loss of objectivity, quantization, simultaneous multipath exploration, collapse of wavepacket, measurement problem, and entanglement. Drawing inspiration from non-linear dynamical systems, subparticles would involve realist hidden variables while high-level observables would not generally be determined, as particles would generally be in unstable states before measurements. Quantum mechanics would constitute a high-level probabilistic description emerging from an underlying causal, objective, local, albeit contextual and unpredictable reality. Altogether, by conceiving particles as granular systems composed of numerous extremely sensitive fluctuating subcorpuscles, this study proposes the possible existence of a local fundamentally realist interpretation of quantum mechanics.


2021 ◽  
pp. 126954
Author(s):  
Zeynep Karatza ◽  
Jim Buckman ◽  
Gabriela M. Medero ◽  
Christopher T. S. Beckett
Keyword(s):  

2021 ◽  
Vol 23 (4) ◽  
Author(s):  
Piotr Bartkowski ◽  
Grzegorz Suwała ◽  
Robert Zalewski

AbstractJammed granular systems, also known as vacuum packed particles (VPP), have begun to compete with the well commercialized group of smart structures already widely applied in various fields of industry, mainly in civil and mechanical engineering. However, the engineering applications of VPP are far ahead of the mathematical description of the complex mechanical mechanisms observed in these unconventional structures. As their wider commercialization is hindered by this gap, in the paper the authors consider experimental investigations of granular systems, mainly focusing on the mechanical responses that take place under various temperature and strain rate conditions. To capture the nonlinear behavior of jammed granular systems, a constitutive model constituting an extension of the Johnson–Cook model was developed and is presented. green The extended and modified constitutive model for VPP proposed in the paper could be implemented in the future into a commercial Finite Element Analysis code, making it possible to carry out fast and reliable numerical simulations.


2021 ◽  
pp. 131324
Author(s):  
Zhao Shan-Shan ◽  
Gan Peng ◽  
Lu Li-Hai ◽  
Chen Yong-Li ◽  
Zhou Ye-Feng ◽  
...  
Keyword(s):  

Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1792
Author(s):  
Aurora Rosa-Masegosa ◽  
Barbara Muñoz-Palazon ◽  
Alejandro Gonzalez-Martinez ◽  
Massimiliano Fenice ◽  
Susanna Gorrasi ◽  
...  

Aerobic granular sludge (AGS) comprises an aggregation of microbial cells in a tridimensional matrix, which is able to remove carbon, nitrogen and phosphorous as well as other pollutants in a single bioreactor under the same operational conditions. During the past decades, the feasibility of implementing AGS in wastewater treatment plants (WWTPs) for treating sewage using fundamentally sequential batch reactors (SBRs) has been studied. However, granular sludge technology using SBRs has several disadvantages. For instance, it can present certain drawbacks for the treatment of high flow rates; furthermore, the quantity of retained biomass is limited by volume exchange. Therefore, the development of continuous flow reactors (CFRs) has come to be regarded as a more competitive option. This is why numerous investigations have been undertaken in recent years in search of different designs of CFR systems that would enable the effective treatment of urban and industrial wastewater, keeping the stability of granular biomass. However, despite these efforts, satisfactory results have yet to be achieved. Consequently, it remains necessary to carry out new technical approaches that would provide more effective and efficient AGS-CFR systems. In particular, it is imperative to develop continuous flow granular systems that can both retain granular biomass and efficiently treat wastewater, obviously with low construction, maintenance and exploitation cost. In this review, we collect the most recent information on different technological approaches aimed at establishing AGS-CFR systems, making possible their upscaling to real plant conditions. We discuss the advantages and disadvantages of these proposals and suggest future trends in the application of aerobic granular systems. Accordingly, we analyze the most significant technical and biological implications of this innovative technology.


Sign in / Sign up

Export Citation Format

Share Document