A novel CNTs functionalized CeO2/CNTs–GAC catalyst with high NO conversion and SO2 tolerance for low temperature selective catalytic reduction of NO by NH3

Chemosphere ◽  
2021 ◽  
pp. 131377
Author(s):  
Yijuan Pu ◽  
Pengchen Wang ◽  
Wenju Jiang ◽  
Zhongde Dai ◽  
Lin Yang ◽  
...  
2015 ◽  
Vol 51 (5) ◽  
pp. 956-958 ◽  
Author(s):  
Zhenping Qu ◽  
Lei Miao ◽  
Hui Wang ◽  
Qiang Fu

Highly dispersed Fe2O3 nanoparticles supported on CNTs showed excellent NO conversion, selectivity and durability towards SO2/H2O at low temperatures (200–325 °C).


2014 ◽  
Vol 898 ◽  
pp. 447-451 ◽  
Author(s):  
Yun Xiao Teng ◽  
Cun Yi Song ◽  
Xi Ning Lu ◽  
Zhen Song Tong ◽  
Yu San Qin

Fe-Ce-Mn catalysts loaded on TiO2-ZrO2materials were prepared by sol-gel method and then were investigated for low temperature selective catalytic reduction (SCR) of NO with NH3. It was found that the NO conversions over Fe-Ce-Mn/TiO2-ZrO2was slightly improved compared with that over Ce-Mn/TiO2-ZrO2. The results showed that 96% NO conversion was obtained over Fe-Ce-Mn/TiO2-ZrO2with the molar ratio of Fe/Mn=0.3. A comparative study of Fe-Ce-Mn/TiO2- ZrO2and Ce-Mn/TiO2-ZrO2for NO conversions at 140°C in the presence of H2O and SO2proved that Fe-Ce-Mn/TiO2-ZrO2exhibited higher resistance to H2O and SO2than that of without Fe catalysts. In addition, Fe-Ce-Mn/TiO2-ZrO2presented 90.49% NO conversion after cutting off the injection of SO2and H2O.


2012 ◽  
Vol 27 (5) ◽  
pp. 495-500 ◽  
Author(s):  
Da-Wang WU ◽  
Qiu-Lin ZHANG ◽  
Tao LIN ◽  
Mao-Chu GONG ◽  
Yao-Qiang CHEN

2019 ◽  
Vol 9 (3) ◽  
pp. 718-730 ◽  
Author(s):  
Jian-Wen Shi ◽  
Yao Wang ◽  
Ruibin Duan ◽  
Chen Gao ◽  
Baorui Wang ◽  
...  

Non-manganese-based metal oxides are promising catalysts for the NH3-SCR (selective catalytic reduction) of NOx at low temperatures.


2014 ◽  
Vol 535 ◽  
pp. 709-712
Author(s):  
Ye Jiang ◽  
Yan Yan ◽  
Shan Bo Huang ◽  
Xiong Zhang ◽  
Xin Wei Wang ◽  
...  

A Ce-Zr-Ti oxide catalyst was prepared by an impregnation method and tested for the selective catalytic reduction of NO with NH3. The Ce-Zr-Ti oxide catalyst exhibited high activity and more than 95% NO conversion was obtained within the temperature range 300-500 °C at the high gas hourly space velocity of 50,000 h-1. The addition of Zr improved the activity of Ce-Ti oxides especially at higher reaction temperatures and their resistance to SO2.


Sign in / Sign up

Export Citation Format

Share Document