The effect of high solids loading in ethanol production integrated with a pulp mill

2016 ◽  
Vol 111 ◽  
pp. 387-402 ◽  
Author(s):  
Elin Svensson ◽  
Valeria Lundberg ◽  
Mikael Jansson ◽  
Charilaos Xiros ◽  
Thore Berntsson
BioResources ◽  
2014 ◽  
Vol 9 (2) ◽  
Author(s):  
Yueshu Gao ◽  
Jingliang Xu ◽  
Zhenhong Yuan ◽  
Yu Zhang ◽  
Cuiyi Liang ◽  
...  

BioResources ◽  
2013 ◽  
Vol 8 (3) ◽  
Author(s):  
Mofoluwake M. Ishola ◽  
Ayda Barid Babapour ◽  
Maryam Nadalipour Gavitar ◽  
Tomas Brandberg ◽  
Mohammad J. Taherzadeh

2017 ◽  
Vol 114 (44) ◽  
pp. 11673-11678 ◽  
Author(s):  
Thanh Yen Nguyen ◽  
Charles M. Cai ◽  
Rajeev Kumar ◽  
Charles E. Wyman

Simultaneous saccharification and fermentation (SSF) of solid biomass can reduce the complexity and improve the economics of lignocellulosic ethanol production by consolidating process steps and reducing end-product inhibition of enzymes compared with separate hydrolysis and fermentation (SHF). However, a long-standing limitation of SSF has been too low ethanol yields at the high-solids loading of biomass needed during fermentation to realize sufficiently high ethanol titers favorable for more economical ethanol recovery. Here, we illustrate how competing factors that limit ethanol yields during high-solids fermentations are overcome by integrating newly developed cosolvent-enhanced lignocellulosic fractionation (CELF) pretreatment with SSF. First, fed-batch glucose fermentations by Saccharomyces cerevisiae D5A revealed that this strain, which has been favored for SSF, can produce ethanol at titers of up to 86 g⋅L−1. Then, optimizing SSF of CELF-pretreated corn stover achieved unprecedented ethanol titers of 79.2, 81.3, and 85.6 g⋅L−1 in batch shake flask, corresponding to ethanol yields of 90.5%, 86.1%, and 80.8% at solids loadings of 20.0 wt %, 21.5 wt %, and 23.0 wt %, respectively. Ethanol yields remained at over 90% despite reducing enzyme loading to only 10 mg protein⋅g glucan−1 [∼6.5 filter paper units (FPU)], revealing that the enduring factors limiting further ethanol production were reduced cell viability and glucose uptake by D5A and not loss of enzyme activity or mixing issues, thereby demonstrating an SSF-based process that was limited by a strain’s metabolic capabilities and tolerance to ethanol.


2001 ◽  
Vol 206-213 ◽  
pp. 75-78
Author(s):  
O. Lyckfeldt ◽  
Lisa Palmqvist ◽  
Frederic Poeydemenge

2018 ◽  
Vol 250 ◽  
pp. 273-280 ◽  
Author(s):  
Bárbara Ribeiro Alves Alencar ◽  
Emmanuel Damilano Dutra ◽  
Everardo Valadares de Sá Barretto Sampaio ◽  
Rômulo Simões Cezar Menezes ◽  
Marcos Antônio Morais

Sign in / Sign up

Export Citation Format

Share Document