scholarly journals Multiple Respiratory Microbiota Profiles Are Associated With Lower Airway Inflammation in Children With Protracted Bacterial Bronchitis

CHEST Journal ◽  
2019 ◽  
Vol 155 (4) ◽  
pp. 778-786 ◽  
Author(s):  
Robyn L. Marsh ◽  
Heidi C. Smith-Vaughan ◽  
Alice C.H. Chen ◽  
Julie M. Marchant ◽  
Stephanie T. Yerkovich ◽  
...  
2017 ◽  
Vol 312 (5) ◽  
pp. L678-L687 ◽  
Author(s):  
Sandra Hodge ◽  
Hai B. Tran ◽  
Rhys Hamon ◽  
Eugene Roscioli ◽  
Greg Hodge ◽  
...  

We reported defective efferocytosis associated with cigarette smoking and/or airway inflammation in chronic lung diseases, including chronic obstructive pulmonary disease, severe asthma, and childhood bronchiectasis. We also showed defects in phagocytosis of nontypeable Haemophilus influenzae (NTHi), a common colonizer of the lower airway in these diseases. These defects could be substantially overcome with low-dose azithromycin; however, chronic use may induce bacterial resistance. The aim of the present study was therefore to investigate two novel macrolides—2′-desoxy-9-(S)-erythromycylamine (GS-459755) and azithromycin-based 2′-desoxy molecule (GS-560660)—with significantly diminished antibiotic activity against Staphylococcus aureus, Streptococcus pneumonia, Moraxella catarrhalis, and H. influenzae. We tested their effects on efferocytosis, phagocytosis of NTHi, cell viability, receptors involved in recognition of apoptotic cells and/or NTHi (flow cytometry), secreted and cleaved intracellular IL-1β (cytometric bead array, immunofluorescence/confocal microscopy), and nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) using primary alveolar macrophages and THP-1 macrophages ± 10% cigarette smoke extract. Dose-response experiments showed optimal prophagocytic effects of GS-459755 and GS-560660 at concentrations of 0.5–1 µg/ml compared with our findings with azithromycin. Both macrolides significantly improved phagocytosis of apoptotic cells and NTHi (e.g., increases in efferocytosis and phagocytosis of NTHi: GS-459755, 23 and 22.5%, P = 0.043; GS-560660, 23.5 and 22%, P = 0.043, respectively). Macrophage viability remained >85% following 24 h exposure to either macrolide at concentrations up to 20 µg/ml. Secreted and intracellular-cleaved IL-1β was decreased with both macrolides with no significant changes in recognition molecules c-mer proto-oncogene tyrosine kinase; scavenger receptor class A, member 1; Toll-like receptor 2/4; or CD36. Particulate cytoplasmic immunofluorescence of NLRP3 inflammasome was also reduced significantly. We conclude that GS-459755 and GS-560660 may be useful for reducing airway inflammation in chronic lung diseases without inducing bacterial resistance.


2009 ◽  
Vol 44 (5) ◽  
pp. 503-511 ◽  
Author(s):  
Stacey L. Peterson-Carmichael ◽  
William T. Harris ◽  
Ruchika Goel ◽  
Terry L. Noah ◽  
Robin Johnson ◽  
...  

2021 ◽  
Author(s):  
Anna E. Karagianni ◽  
Samantha L. Eaton ◽  
Dominic Kurian ◽  
Eugenio Cillán-Garcia ◽  
Jonathan Twynam-Perkins ◽  
...  

Abstract Airway inflammation is highly prevalent in horses, with the majority of non-infectious cases being defined as equine asthma. Currently, cytological analysis of airway derived samples is the principal method of assessing lower airway inflammation. Samples can be obtained by tracheal wash (TW) or by lavage of the lower respiratory tract (bronchoalveolar lavage fluid; BALF). Although BALF cytology carries significant diagnostic advantages over TW cytology, sample acquisition is invasive, making it prohibitive for routine and sequential-screening of airway health. The aim of this study was to establish a robust protocol to isolate macrophages, protein and RNA for molecular characterisation of TW samples and demonstrate the applicability of sample handling to rodent and human pediatric bronchoalveolar lavage fluid isolates. TW samples provided a good quality and yield of both RNA and protein for downstream transcriptomic/proteomic analyses. The sample handling methodologies were successfully applicable to BALF for rodent and human research. TW samples represent a rich source of airway cells, and molecular analysis to facilitate and study airway inflammation, based on both transcriptomic and proteomic analysis. This study provides a necessary methodological platform for future transcriptomic and/or proteomic studies on equine lower respiratory tract secretions and BALF samples from humans and mice.


2003 ◽  
Vol 76 (4) ◽  
pp. 309-312 ◽  
Author(s):  
J. G. C. van Amsterdam ◽  
E. W. M. A. Bischoff ◽  
A. de Klerk ◽  
A. P. J. Verlaan ◽  
L. M. N. Jongbloets ◽  
...  

2020 ◽  
Vol 14 ◽  
pp. 175346662096515
Author(s):  
Manuela Latorre ◽  
Elena Bacci ◽  
Veronica Seccia ◽  
Maria Laura Bartoli ◽  
Cristina Cardini ◽  
...  

Background and aims: Severe asthma may require the prescription of one of the biologic drugs currently available, using surrogate markers of airway inflammation (serum IgE levels and allergic sensitization for anti-IgE, or blood eosinophils for anti-IL5/IL5R). Our objective: to assess upper and lower airway inflammation in severe asthmatics divided according to the eligibility criteria for one of the target biologic treatments. Methods: We selected 91 severe asthmatics, uncontrolled despite high-dose ICS-LABA, and followed for >6 months with optimization of asthma treatment. Patients underwent clinical, functional and biological assessment, including induced sputum and nasal cytology. They were then clustered according to the eligibility criteria for omalizumab or mepolizumab/benralizumab. Results: Four clusters were selected: A (eligible for omalizumab, n = 23), AB (both omalizumab and mepolizumab, n = 26), B (mepolizumab, n = 22) and C (non-eligible for both omalizumab and mepolizumab, n = 20). There was no difference among clusters for asthma control (Asthma Control Test and Asthma Control Questionnaire 7), pre-bronchodilator forced expiratory volume in 1 s, serum IgE and fractional exhaled nitric oxide levels. Sputum eosinophils were numerically higher in clusters AB and B, in agreement with the higher levels of blood eosinophils. Allergic rhinitis was more frequent in clusters A and AB, while chronic rhinosinusitis with nasal polyps prevalence increased progressively from A to C. Eosinophils in nasal cytology were higher in clusters AB, B and C. Conclusion: Eosinophilic upper and lower airway inflammation is present in the large majority of severe asthmatics, independently from the prescription criteria for the currently available biologics, and might suggest the use of anti-IL5/IL5R or anti IL4/13 also in patients without blood eosinophilia. The reviews of this paper are available via the supplemental material section.


Sign in / Sign up

Export Citation Format

Share Document