simple liquid
Recently Published Documents


TOTAL DOCUMENTS

531
(FIVE YEARS 78)

H-INDEX

42
(FIVE YEARS 4)

SeMA Journal ◽  
2022 ◽  
Author(s):  
Adolfo Vázquez-Quesada ◽  
Marco Ellero

AbstractA stochastic Lagrangian model for simulating the dynamics and rheology of a Brownian multi-particle system interacting with a simple liquid medium is presented. The discrete particle model is formulated within the GENERIC framework for Non-Equilibrium Thermodynamics and therefore it satisfies discretely the First/Second Laws of Thermodynamics and the Fluctuation Dissipation Theorem (FDT). Long-range fluctuating hydrodynamics interactions between suspended particles are described by an explicit solvent model. To this purpose, the Smoothed Dissipative Particle Dynamics method is adopted, which is a GENERIC-compliant Lagrangian meshless discretization of the fluctuating Navier–Stokes equations. In dense multi-particle systems, the average inter-particle distance is typically small compared to the particle size and short-range hydrodynamics interactions play a major role. In order to bypass an explicit—computationally costly—solution for these forces, a lubrication correction is introduced based on semi-analytical expressions for spheres under Stokes flow conditions. We generalize here the lubrication formalism to Brownian conditions, where an additional thermal-lubrication contribution needs to be taken into account in a way that discretely satisfies FDT. The coupled lubrication dynamics is integrated in time using a generalized semi-implicit splitting scheme for stochastic differential equations. The model is finally validated for a single particle diffusion as well as for a Brownian multi-particle system under homogeneous shear flow. Results for the diffusional properties as well as the rheological behavior of the whole suspension are presented and discussed.


2022 ◽  
Author(s):  
Sijing Zeng ◽  
Dengjie Zhong ◽  
Yunlan Xu ◽  
Nianbing Zhong

In order to improve the reactivity of nZVI for Cr(VI) removal, porous styrene resin loaded carboxymethyl cellulose-stabilized nano-zero-valent iron (CMC-D201@nZVI) was firstly prepared by the simple liquid phase reduction method....


2021 ◽  
pp. 1-8
Author(s):  
Hyun Woo Cha ◽  
Byeong-Seon An ◽  
Cheol-Woong Yang

In situ liquid cell transmission electron microscopy (TEM) is a very useful tool for investigating dynamic solid–liquid reactions. However, there are challenges to observe the early stages of spontaneous solid–liquid reactions using a closed-type liquid cell system, the most popular and simple liquid cell system. We propose a graphene encapsulation method to overcome this limitation of closed-type liquid cell TEM. The solid and liquid are separated using graphene to suspend the reaction until the graphene layer is destroyed. Graphene can be decomposed by the high-energy electron beam used in TEM, allowing the reaction to proceed. Fast dissolution of graphene-capped copper nanoparticles in an FeCl3 solution was demonstrated via in situ liquid cell TEM at 300 kV using a cell with closed-type SiNx windows.


2021 ◽  
Author(s):  
Stanislav Ursegov ◽  
Evgenii Taraskin ◽  
Armen Zakharian

Abstract Globally, steam injection for heavy and high-viscous oil recovery is increasing, including carbonate reservoirs. Lack of full understanding such reservoir heating and limited information about production and injection rates of individual wells require to forecast steam injection not only deterministic and simple liquid displacement characteristic modeling types, but also the data-driven one, which covers the adaptive modeling. The implementation and validation of the adaptive system is presented in this paper by one of the world's largest carbonate reservoirs with heavy and high-viscous oil of the Usinsk field. Steam injection forecasting in such reservoirs is complicated by the unstable well interactions and relatively low additional oil production. In the adaptive geological model, vertical dimensions of cells are similar to gross thicknesses of stratigraphic layers. Geological parameters of cells with drilled wells do not necessarily match actual parameters of those wells since the cells include information of neighboring wells. During the adaptive hydrodynamic modeling, a reservoir pressure is reproduced by cumulative production and injection allocation among the 3D grid cells. Steam injection forecasting is firstly based on the liquid displacement characteristics, which are later modified considering well interactions. To estimate actual oil production of steamflooding using the reservoir adaptive geological and hydrodynamic models, dimensionless interaction coefficients of injection and production wells were first calculated. Then, fuzzy logic functions were created to evaluate the base oil production of reacting wells. For most of those wells, actual oil production was 25 – 30 % higher than the base case. Oil production of steamflooding for the next three-year period was carried out by modeling two options of the reservoir further development - with and without steam injection. Generally, forecasted oil production of the option with steam injection was about 5 % higher. The forecasting effectiveness of cyclic steam stimulations of production wells was done using the cross-section method, when the test sample was divided into two groups - the best and the worst, for which the average forecasted oil rates after the stimulations were respectively higher or lower than the average actual oil rate after the stimulations for the entire sample. The difference between the average actual oil rates after the stimulations of the best and the worst groups was 32 %, i.e. this is in how much the actual oil production could have increased if only the best group of the sample had been treated.


2021 ◽  
Vol 905 (1) ◽  
pp. 012076
Author(s):  
D Nurcahyanti ◽  
N Wahyuningsih ◽  
J L Amboro

Abstract This study aims to transfer technology of natural dyeing technique of tradition batik using clay extraction from Bayat, Klaten, Central Java. This is a solution to research partners’ problems related to the limitations of product variation techniques to meet market preference for products with innovation or novelty elements. In detail the partners’ problems include 1) Limited marketing, 2) Limited capital, 3) Prices of cloth as raw materials are getting more expensive, 4) The variety of designs or motifs and batik dyeing are limited due to artisans’ dependence on the orders from customers or batik companies, and the lack of human resources capabilities in terms of design and dyeing, particularly natural dyeing, and 5) Most production equipment of batik SMEs is old. This study used experimental and trial method. The implementation of natural dyeing techniques using Bayat clay has succeeded to solve the following problems: 1) Increasing the ability of batik artisans in Bayat to easily make varied alternative natural dyes from its local natural resources to expand market share and operating profit, 2) Cost savings or efficiency for producing eco-friendly batik dyeing, and 3) Reduced production waste due to utilizing natural dyes by using simple Liquid Waste Final Disposal Installation.


Author(s):  
Abdul Rafeq Saleman ◽  
Mohamad Shukri Zakaria ◽  
Ridhwan Jumaidin ◽  
Mohd Nazmin Maslan

Thermal energy transfer (TET) is the main performance of contact interfaces which has been studied at a molecular level. Several investigations on TET were accomplished, however, the influences of liquid film thickness on TET have not been sufficiently examined. Thus, this paper analyses the influences of liquid film thickness on TET across solid–liquid (S-L) interfaces. Two liquid film thicknesses (Lz) of 30 Å and 60 Å have been evaluated, and two shear directions (x- and y-directions) have been tested in the simulation system. It has been found that there is no significant difference in the density distribution of liquid regardless of the shear directions for the same Lz. However, there are differences in the density distribution of liquid between Lz of 30 Å and 60 Å. Based on the results its suggests that, the cut-off of the temperature and velocity at the contact interfaces of solid and liquid is substantially influences by the liquid thickness of the simulation system. It is found that, there are a significant different in the thermal boundary resistance (TBR) for Lz of 30 Å and 60 Å for cases liquid sheared in the x-direction. Whereas TBR for Lz of 30 Å and 60 Å sheared in the y-direction have no significant difference. In conclusion, the TET is affected by the velocity cut-off at the contact interfaces of solid and liquid where larger velocity discontinuity exhibits higher TBR.


Author(s):  
Mehwish Mushtaq ◽  
Yasar Shah ◽  
  Samiullah ◽  
Fazli Nasir ◽  
Haroon Khan ◽  
...  

Abstract In this research work, an isocratic, reversed-phase high-performance liquid chromatography-ultraviolet/visible detector method was developed for analysis of voriconazole standard (stock-solution) and in plasma samples. Optimization and validation of the method was carried out as per international guidelines. The method offered a simple liquid–liquid extraction technique, which exhibited best recovery of voriconazole along with fluconazole, i.e., internal standard. Different experimental conditions were tried and ultimately, the best outcomes were accomplished utilizing C-18 Perkin-Elmer® column with particulars of 150 mm length, 4.6 mm inner diameter and 5 μm particle size, protected by an RP-18 Perkin-Elmer® Pre-column guard cartridge with specifications of 10 μm particle size, 30 mm length and 4.6 mm inner diameter, utilizing mobile-phase of acetonitrile-water (ACN: H2O) in proportion of 60: 40 v/v, having a flow rate of 1.5 mL/min, and wavelength of 254 nm. All the analytes were observed to be separated in ≤7 min. A linear calibration curve was obtained at concentration range of 01–10 μg/mL of voriconazole. The correlation coefficient of voriconazole was observed to be 0.999, and average recovery (in percent) was 97.4%, whereas the relative standard deviation value was ≤2%. The lower limit of detection was 0.01 μg/mL, whereas, lower limit of quantification was 0.03 μg/mL, respectively. This developed method provided outstanding results of all validation parameters, i.e., recovery, accuracy, selectivity, precision and reproducibility. The method proposed for voriconazole analysis was applied effectively for further research investigation of voriconazole in human-plasma samples (to assess the pharmacokinetic parameters), pharmaceutical formulations and pharmacokinetic drug–drug interaction’s.


2021 ◽  
Author(s):  
Thomas J. Böddeker ◽  
Kathryn A. Rosowski ◽  
Doris Berchtold ◽  
Leonidas Emmanouilidis ◽  
Yaning Han ◽  
...  

Membraneless organelles are liquid-like domains that form inside living cells by phase-separation. While standard physical models of their formation assume their surroundings to be a simple liquid, the cytoplasm is an active viscoelastic environment. To investigate potential coupling of phase separation with the cytoskeleton, we quantify structural correlations of stress granules and microtubules in a human-derived epithelial cell line. We find that microtubule networks are significantly perturbed in the vicinity of stress granules, and that large stress granules conform to the local pore-structure of the microtubule network. When microtubules are depolymerized by nocodazole, tubulin enrichment is localized near the surface of stress granules. We interpret these data using a thermodynamic model of partitioning of particles to the surface and bulk of droplets. This analysis shows that proteins generically have a non-specific affinity for droplet interfaces, which becomes most apparent when they weakly partition to the bulk of droplets and have a large molecular weight. In this framework, our data is consistent with a weak (lower than kbT) affinity of tubulin sub-units for stress granule interfaces. As microtubules polymerize their affinity for interfaces increases, providing sufficient adhesion to deform droplets and/or the network. We validate this basic physical phenomena in vitro through the interaction of a simple protein-RNA condensate with tubulin and microtubules.


Sign in / Sign up

Export Citation Format

Share Document