Quartz filter-based thermal desorption gas chromatography mass spectrometry for in-situ molecular level measurement of ambient organic aerosols

2019 ◽  
Vol 1589 ◽  
pp. 141-148 ◽  
Author(s):  
Haixia Ren ◽  
Mo Xue ◽  
ZhaoJin An ◽  
Wei Zhou ◽  
Jingkun Jiang
2020 ◽  
Vol 17 (1) ◽  
pp. 28
Author(s):  
Anthony Qualley ◽  
Geoffrey T. Hughes ◽  
Mitchell H. Rubenstein

Environmental contextQuantitative field-based sampling of airborne volatile organics continues to be a challenge because of the absence of laboratory supplies and facilities. Approaches are required to overcome poor data arising from difficulties with calibration of fielded instruments. This method normalises responses across portable thermal desorption gas-chromatography mass spectrometers and requires no advance calibration, enabling accurate and precise use of previously established response factors ported from the laboratory to fielded instruments. AbstractSorbent capture provides a process for collecting airborne volatile organic compounds (VOCs) for analysis by thermal desorption gas chromatography-mass spectrometry (TD-GC-MS). Under typical laboratory conditions, analytical standards are readily available and calibration of instrumentation is a routine process. In contrast, field-portable instruments are standardised using a representative curve prepared on a limited number of instruments and then applied to fielded units. The performance of field-portable TD-GC-MS systems when deployed to multiple remote sites was studied, and a large variability in sensitivity and performance was observed when using the manufacturer-prescribed methods for calibration of instruments and normalisation of the data. This variability was remedied by the implementation of a non-interfering calibration that is pre-incorporated onto the sorbent media. Use of an in-situ calibration curve constructed using stable isotope labelled standards provided robust quantification, accuracy of measurement and diagnostic capabilities for malfunctioning fielded equipment. Pre-incorporation of isotopic analogues onto thermal desorption tubes in advance of field distribution greatly improves the accuracy and reproducibility of analyses and demonstrates, for the first time, definitive quantification of target analytes using field-portable GC-MS in an operational theatre.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 683 ◽  
Author(s):  
Yukihiro Ouchi ◽  
Hiroyuki Yanagisawa ◽  
Shigehiko Fujimaki

This study describes a methodology for evaluating regulatory levels of phthalate contamination. By collecting experimental data on short-term phthalate migration using thermal desorption–gas chromatography–mass spectrometry (TD–GC–MS), the migration of di(2-ethylhexyl) phthalate (DEHP) from polyvinyl chloride (PVC) to polyethylene (PE) was found to be expressed by the Fickian approximation model, which was originally proposed for solid (PVC)/liquid (solvent) migration of phthalates. Consequently, good data correlation was obtained using the Fickian approximation model with a diffusion coefficient of 4.2 × 10−12 cm2/s for solid (PVC)/ solid (PE) migration of DEHP at 25 °C. Results showed that temporary contact with plasticized polymers under a normal, foreseeable condition may not pose an immediate risk of being contaminated by phthalates at regulatory levels. However, as phthalates are small organic molecules designed to be dispersed in a variety of polymers as plasticizers at a high compounding ratio, the risk of migration-related contamination can be high in comparison with other additives, especially under high temperatures. With these considerations in mind, the methodology for examining regulatory levels of phthalate contamination using TD–GC–MS has been successfully demonstrated from the viewpoint of its applicability to solid (PVC)/solid (PE) migration of phthalates.


Sign in / Sign up

Export Citation Format

Share Document