P301 Long-term effects of transcranial electrical stimulation in the mouse visual cortex

2017 ◽  
Vol 128 (3) ◽  
pp. e158
Author(s):  
D. Tsapa ◽  
M. Ahmadlou ◽  
J.A. Heimel
2021 ◽  
pp. 1-10
Author(s):  
Michihiro Osumi ◽  
Daisuke Shimizu ◽  
Yuki Nishi ◽  
Shu Morioka

Background: Patients with brachial plexus avulsion (BPA) usually experience phantom sensations and phantom limb pain (PLP) in the deafferented limb. It has been suggested that evoking the sensation of touch in the deafferented limb by stimulating referred sensation areas (RSAs) on the cheek or shoulder might alleviate PLP. However, feasible rehabilitation techniques using this approach have not been reported. Objective: The present study sought to examine the analgesic effects of simple electrical stimulation of RSAs in BPA patients with PLP. Methods: Study 1: Electrical stimulation of RSAs for 60 minutes was conducted for six BPA patients suffering from PLP to examine short-term analgesic effects. Study 2: A single case design experiment was conducted with two BPA patients to investigate whether electrical stimulation of RSAs was more effective for alleviating PLP than control electrical stimulation (electrical stimulation of sites on side opposite to the RSAs), and to elucidate the long-term effects of electrical stimulation of RSAs. Results: Study 1: Electrical stimulation of RSAs evoked phantom touch sensations in the deafferented limb, and significantly alleviated PLP (p <  0.05). Study 2: PLP was alleviated more after electrical stimulation on RSAs compared with control electrical stimulation (p <  0.05). However, the analgesic effects of electrical stimulation on RSAs were observed only in the short term, not in the long term (p >  0.05). Conclusions: Electrical stimulation of RSAs not only evoked phantom touch sensation but also alleviated PLP in the short term. The results indicate that electrical stimulation of RSAs may provide a useful practical rehabilitation technique for PLP. Future studies will be required to clarify the mechanisms underlying immediate PLP alleviation via electrical stimulation of RSAs.


2020 ◽  
Author(s):  
Shumsuzzaman Khan

AbstractIn reward-based learning, synaptic eligibility traces are a well-defined theoretical solution for the conversion of initial co-activation of pre and postsynaptic neurons into long-term changes in synaptic strength by reward-linked neuromodulators. However, the types of neuromodulators involved in such a phenomenon in mouse visual cortex remain unknown. To characterize the Ex vivo condition, we used optogenetic stimulation of channelrhodopsin-(ChR2) expressing Cre/Ai32(ChR2-eYFP); Tph2-Cre/Ai32(ChR2-eYFP); Thi-Cre/Ai32(ChR2-eYFP) homozygous mice, which release acetylcholine, serotonin, and norepinephrine, respectively. With these mice it is possible to measure the transformation of eligibility traces into long-term changes by endogenous neuromodulators. Here we delineated that layer 2/3 neurons in the visual cortex showed no LTD after conditioning with paired-pulse low-frequency stimulation (ppLFS; 2Hz, 15 min). However, if conditioning was paired with acetylcholine, serotonin, or norepinephrine release upon 473 nm optical stimulation in brain slices, LTD occurs in every case. Thus, our data suggests a new pathway to connect the gap between stimulus and reward. Moreover, we found that stimulation by theta-glass or metal stimulators evoked IPSC traces with the same amplitudes but differences in decay kinetics, further questioning the appropriate use of stimulators in brain slices for evoking an event.


2018 ◽  
Vol 223 (5) ◽  
pp. 2073-2095 ◽  
Author(s):  
Isabelle Scheyltjens ◽  
Samme Vreysen ◽  
Chris Van den Haute ◽  
Victor Sabanov ◽  
Detlef Balschun ◽  
...  

2013 ◽  
Vol 33 (18) ◽  
pp. 7787-7798 ◽  
Author(s):  
M. K. Arami ◽  
K. Sohya ◽  
A. Sarihi ◽  
B. Jiang ◽  
Y. Yanagawa ◽  
...  

2021 ◽  
Author(s):  
Shumsuzzaman Khan

Abstract In reward-based learning, synaptic eligibility traces are a well-defined theoretical solution for the conversion of initial co-activation of pre and postsynaptic neurons into long-term changes in synaptic strength by reward-linked neuromodulators. However, the types of neuromodulators involved in such a phenomenon in mouse visual cortex remain unknown. To characterize the Ex vivo condition, we used optogenetic stimulation of channelrhodopsin-(ChR2) expressing Cre/Ai32(ChR2-eYFP); Tph2-Cre/Ai32(ChR2-eYFP); Thi-Cre/Ai32(ChR2-eYFP) homozygous mice, which release acetylcholine, serotonin, and norepinephrine, respectively. With these mice it is possible to measure the transformation of eligibility traces into long-term changes by endogenous neuromodulators. Here we delineated that layer 2/3 neurons in the visual cortex showed no LTD after conditioning with paired-pulse low-frequency stimulation (ppLFS; 2Hz, 15 min). However, if conditioning was paired with acetylcholine, serotonin, or norepinephrine release upon 473 nm optical stimulation in brain slices, LTD occurs in every case. Thus, our data suggests a new pathway to connect the gap between stimulus and reward. Moreover, we found that stimulation by theta-glass or metal stimulators evoked IPSC traces with the same amplitudes but differences in decay kinetics, further questioning the appropriate use of stimulators in brain slices for evoking an event.


Sign in / Sign up

Export Citation Format

Share Document